
LEG
ARCHITECTURE

(codename)

I. Abstract

This technical document is a computer science specification

describing a computer architecture named LEG Architecture.

The LEG Architecture is a RISC architecture that specifies both 32-

bit and 64-bit addressing system implementations.

It supports advanced memory management such as Paging, an IEEE

754 compliant FPU and an efficient and clean design to support multi-

tasking operating systems.

The simplicity of the LEG Architecture makes it possible to be

implemented on a Field-Programmable Gate Array (FPGA), which turns

the implemented CPU suitable for low power consumption applications.

2

II. Authors

This document, describing the LEG Architecture Specification, was

written by:

Author's Name: Pedro A. Hortas

Author's Email: pedro.hortas@ieee.org

Current Revision: Draft E5

Date: 9th August 2012

The author was also the creator of LEG Architecture.

3

III. Conventions

Although the concepts found in this document are mostly self-

contained and are described as clearly as possible, it is recommended

that the reader has a some basic understating on Computer Architecture

domain.

This document also uses some notations for numbering, such as

binary and hexadecimal, that the reader must be comfortable with in

order to make this document easier to read.

Sometimes, abbreviations and/or acronyms are used. The following

list covers most part of these abbreviations and acronyms with their

respective meaning:

• ALU – Arithmetic Logic Unit

• ASCII – American Standard Code for Information Interchange

• CPU – Central Process Unit

• FPU – Floating-Point Unit

• ID – Identifier

• IEEE – Institute of Electrical and Electronics Engineers

• I/O – Input / Output

• LEG – LEG Architecture (either 32-bit and 64-bit)

• LEG32 – LEG Architecture with 32-bit addressing system

• LEG64 – LEG Architecture with 64-bit addressing system

• LSB – Least Significant Bit

• MSB – Most Significant Bit

• Opcode – Operation Code

• OS – Operating System

• RISC – Reduced Instruction Set Computing

4

IV. Table of Contents

I. Abstract

II. Authors

III. Conventions

IV. Table of Contents

V. Specifications

 1. Architecture Overview 8

 1.1. Notations 8

 1.2. Endianess 8

 1.3. Floating-Point Numbers 9

 1.4. Exceptions 9

 1.5. External Hardware Controllers 9

 1.6. Expansibility and Extensions 10

 2. Registers 11

 2.1. Control Registers 11

 2.1.1. Instruction Pointer Register (RIP) 12

 2.1.2. Status Register (RST) 12

 2.1.3. Fault Flags Register (RFF) 13

 2.1.4. Fault-Handler Address Register (RFA) 14

 2.1.5. Task Registers (RBT and RCT) 15

 2.1.5.1. Base Task Register (RBT) 16

 2.1.5.2. Current Task Register (RCT) 17

 2.1.6. Paging Address Register (RPA) 17

 2.1.7. Return Address Register (RRA) 18

 2.1.8. Stack Address Register (RSA) 19

 2.1.9. Comparator Register (RCMP) 19

 2.1.10. Logic Register (RLGIC) 20

 2.1.11. Arithmetic Register (RARTH) 21

 2.2. General Purpose Registers (RGP1 to RGP8) 23

 2.3. Arithmetic Logic Registers (RAL1 to RAL4) 24

 2.4. Floating-Point Registers (RFP1 to RFP4) 25

 3. Privilege Levels 26

 3.1. Privilege Level 0 26

 3.2. Privilege Level 1 27

 4. Instruction Set 29

5

 4.1. CPVR 31

 4.2. CPVL 32

 4.3. CPR 32

 4.4. CPRR 33

 4.5. CMP 33

 4.6. JMP 34

 4.7. CALL 34

 4.8. RET 35

 4.9. ARTH 36

 4.10. LGIC 36

 4.11. INTR 37

 4.12. CEB 37

 4.13. NOP 38

 4.14. LTSK 38

 5. Interrupts 40

 5.1. Interrupt Vector 41

 5.2. Architecture-Specific Interrupts 42

 5.2.1. Interrupt Vector Configuration Interrupt 43

 5.2.2. Halt System Interrupt 43

 5.2.3. Keyboard Input Interrupt 44

 5.2.4. Display Output Interrupt 45

 5.2.5. Storage I/O Interrupt 45

 5.2.6. Page Cache Invalidation Interrupt 46

 5.2.7. Timer Configuration Interrupt 47

 5.2.8. Timer Expiration Interrupt 48

 5.3. User-Defined Interrupts 48

 5.4. Interrupt Handling 49

 6. Faults 50

 6.1. Fault States 50

 6.1.1. Machine Check Fault 50

 6.1.2. Bad Memory Reference Fault 51

 6.1.3. Bad Register Reference Fault 51

 6.1.4. Bad Register Value Fault 52

 6.1.5. Bad Operation Value Fault 52

 6.1.6. Illegal Interrupt Fault 52

 6.1.7. Illegal Instruction Fault 53

 6.1.8. Floating-Point Unit Fault 53

6

 6.1.9. Arithmetic Logic Unit Fault 53

 6.1.10. Page Permission Fault 54

 6.1.11. Page Fault 54

 6.1.12. Privilege Fault 55

 6.1.13. Input/Output Operation Fault 55

 6.1.14. Interrupt Fault 55

 6.2. Fault Handling 56

 7. Memory Management 57

 7.1. Reserved Memory Regions 57

 7.2. Physical Address Space 58

 7.3. Logical Address Space 58

 7.4. Paging 59

 7.4.1. Page Structure 59

 7.4.2. Address Translation 61

 7.4.3. Page Permissions 63

 8. Multi-Tasking 64

 8.1. Task Structure 64

 8.2. Task Address Space 65

 8.3. Context Switching 66

 9. Timers 67

 9.1. Timer Parameters 67

 9.2. Timer Configuration 68

VI. Appendixes

 Appendix A – Bootloader Example 69

 Appendix B – Debugging Techniques 70

 Appendix C – Multi-Tasking Process Scheduler 71

 Appendix D – Interrupts and Context Switching 72

7

V. Specifications

1. Architecture Overview

The LEG Architecture is a RISC architecture. It specifies twenty-

eight (28) registers, being twelve (12) defined as Control Registers (See

Section 2.1. Control Registers), eight (8) General Purpose Registers (See

Section 2.2. General Purpose Registers), four (4) Arithmetic Logic

Registers (See Section 2.3. Arithmetic Logic Registers) and four (4)

Floating-Point Registers (See Section 2.4. Floating-Point Registers). It

also implements simple Paging (See Section 7.4. Paging) and Multi-

Tasking (See Section 8. Multi-Tasking) mechanisms.

LEG Architecture specifies both 32-bit and 64-bit implementations:

The LEG32 Architecture (32-bit) and LEG64 Architecture (64-bit).

1.1. Notations

This section describe the notations used along this document.

Numbers in this document may be represented either in decimal,

hexadecimal or binary format. The notations used for these numbers are:

• Decimal numbers are in the format 00

• Hexadecimal numbers are in the format 0x00

• Binary numbers are in the format 0b00

1.2. Endianess

Endianess, also known as Byte Order, is the ordering by which the

CPU represents, in the system memory, an addressable value that is

greater than 1 byte. There are two types of Endianess: Little Endian and

Big Endian.

8

Little Endian systems represent a greater than 1 byte value in

system memory from the least significant byte to the most significant.

Big Endian systems represent a greater than 1 byte value in system

memory from the most significant byte to the least significant.

LEG Architecture is Big Endian.

1.3. Floating-Point Numbers

LEG Architecture Floating-Point numbers are represented as

specified by the IEEE 754 standard. Please refer to this standard for more

information regarding this topic.

1.4. Exceptions

Exceptions in LEG Architecture are considered a state that cannot be

handled alone by the CPU, and therefore are considered a fault state. This

means that there's no distinguishable state that separate an Exception

from a Fault, being any Exception in LEG Architecture treated as a Fault.

Faults can occur at any moment, when the CPU is unable to handle

the current machine state. These states may be caused by software

requesting operations that the CPU cannot perform, or by hardware such

as the detection of a failed hardware component either by the CPU or by

an external controller, causing a Machine Check Fault.

For more information regarding Fault States, please refer to Section

6. Faults and Section 6.1. Fault States.

1.5. External Hardware Controllers

LEG Architecture does not specify how the CPU should interact with

9

External Hardware Controllers. This should be implementation specific of

the CPU.

The CPU implementation is responsible to correctly interpret what is

specified in this document and implement their own communication

mechanisms between the CPU and the External Hardware Controllers.

Refer to Section 1.6. Expansibility and Extensions for more

information regarding this topic.

1.6. Expansibility and Extensions

There are no limitations on this specification that inhibits the

expansibility of the LEG Architecture as long as the CPU implementation is

in accordance with the specifications described in this document.

It is allowed to implement new Interrupts (See Section 5.

Interrupts) for expansibility purposes as long as their IDs fall in the range

of the last ten (10) Architecture-Specific Interrupts (from ID 21 to ID 31)

(See Section 5.2. Architecture-Specific Interrupts). These IDs are

specially reserved for that purpose and will never be used in future LEG

Architecture specifications.

10

2. Registers

There are twenty-eight (28) registers available in LEG Architecture

divided as twelve (12) Control Registers (RIP, RST, RFF, RFA, RBT, RCT,

RPA, RRA, RSA, RCMP, RLGIC and RARTH), eight (8) General Purpose

Registers (RGP1, RGP2, RGP3, RGP4, RGP5, RGP6, RGP7 and RGP8), four

(4) Arithmetic Logic Registers (RAL1, RAL2, RAL3 and RAL4) and four (4)

Floating Point Registers (RFP1, RFP2, RFP3 and RFP4). All register sizes

are 32-bit long for LEG32 Architecture and 64-bit long for LEG64

Architecture.

Control Registers are responsible for CPU, instruction and code

execution flow control. They provide ways to configure parameters for

memory and task management, instruction behavior modification, etc.

General Purpose Registers, as the name states, are registers for

general purpose operations that may be used for memory handling,

arithmetic and logic operations.

Arithmetic Logic Registers are optimized registers for arithmetic and

logic operations. Despite the fact that those operations may be performed

with General Purpose Registers, it’s strongly recommended the use of

Arithmetic Logic Registers for this purpose as they are optimized for such

operations.

Floating-Point Registers are reserved for operations that involve

floating-point numbers. It is important to note that floating-point

operations shall never be performed through any other register but the

Floating-Point Registers, as undefined behavior may occur.

2.1. Control Registers

The Control Registers control the CPU behavior. There are twelve

(12) Control Registers that can be configured by operating system

processes running at Privilege Level 0 (see Section 3. Privilege Levels).

11

Other processes running at a different Privilege Level may only read the

Control Registers and are unable to modify them directly, except for RSA,

RCMP, RARTH and RLGIC that can still be modified by code being

executed at any Privilege Level. The specifications for each Control

Register are defined in the following sub-sections (from Section 2.1.1.

Instruction Pointer Register through Section 2.1.11. Arithmetic

Register).

2.1.1. Instruction Pointer Register (RIP)

The Instruction Pointer Register (RIP) controls the code execution

flow. It points directly to a memory reference containing valid opcodes,

performing their respective operations.

When Paging is enabled (see Section 7.2. Paging) the Logical

Address referenced by RIP is first translated to the respective Physical

Address. Pages containing code must have the Executable Permission flag

enabled or a Page Permission Fault (see Section 6.1.10. Page Permission

Fault) will occur.

RIP cannot be directly modified by processes running at Privilege

Level 1 nor Privilege Level 0 (see Section 3. Privilege Levels). Any

operation requesting modifications to RIP will cause an Invalid Instruction

Fault to occur (see Section 6.1.7. Illegal Instruction Fault). Code

execution flow may be modified through CALL, RET and JMP Instructions

(see Section 4.6. JMP, Section 4.7. CALL and Section 4.8. RET).

After CPU initialization, RIP will point to the first address in system

memory that is not specified as a Reserved Memory Region (See Section

7.1. Reserved Memory Regions).

2.1.2. Status Register (RST)

The Status Register (RST) provides a set of configurable bit flags for

CPU control and configuration. There are N possible configuration flags for

12

RST, being N equal to 32 on LEG32 Architecture or equal to 64 on LEG64

Architecture, but only 5 are currently implemented, being the others

reserved for future specifications and shall not be used as a Bad Register

Value Fault may occur (See Section 6.1.4. Bad Register Value Fault).

Table 2.1 describes the currently implemented flags for RST

register.

RST bit Description Status Section

0 Enable/Disable Interrupts Set to enable 5. Interrupts

1 Enable/Disable Fault Handling Set to enable 6. Faults

2 Enable/Disable Task Registers Set to enable 8. Multi-Tasking

3 Privilege Level Configuration Set to Privilege Level 1 3. Privilege Levels

4 Enable/Disable Paging Set to enable 7.4. Paging

(Table 2.1. Status Register Description)

Detailed information on flags 0 to 4 can be found on the

corresponding indicated sections.

2.1.3. Fault Flags Register (RFF)

The Fault Flags Register (RFF) indicates, through bit flags, which

Faults occurred. Whenever a Fault occur (See Section 6. Faults), the

corresponding bit for that fault is set in this register. If Fault Handling

(See Section 6.2. Fault Handling) is enabled, the routine pointed by RFA

(See Section 2.1.4. Fault-Handler Address Register) is executed and if

Task Registers are enabled (See Section 2.1.6. Current Task Register and

Section 9. Multi-Tasking) the Current Task Context is saved to the

address pointed by RCT and the Base Task Context is loaded from RBT

address.

Table 2.2 describes the Fault bit flags currently defined for RFF

register.

13

RFF bit Fault Section

0 Machine Check 6.1.1. Machine Check Fault

1 Bad Memory Reference 6.1.2. Bad Memory Referenced Fault

2 Bad Register Reference 6.1.3. Bad Register Reference Fault

3 Bad Register Value 6.1.4. Bad Register Value Fault

4 Bad Operation Value 6.1.5. Bad Operation Value Fault

5 Illegal Interrupt 6.1.6. Illegal Interrupt Fault

6 Illegal Instruction 6.1.7. Illegal Instruction

7 Floating Point Unit 6.1.8. Floating Point Unit Fault

8 Arithmetic Logic Unit 6.1.9. Arithmetic Logic Unit Fault

9 Page Permission 6.1.10. Page Permission Fault

10 Page 6.1.11. Page Fault

11 Privilege 6.1.12. Privilege Fault

12 Input/Output Operation 6.1.13. Input/Output Operation Fault

13 Interrupt 6.1.14. Interrupt Fault

24-31 Interrupt ID 6.1.14. Interrupt Fault

(Table 2.2. Fault Flags Register Description)

2.1.4. Fault-Handler Address Register (RFA)

Fault-Handler Address Register (RFA) must be configured to hold

the address for an operating system Fault Handler routine when RST bit 1

is set (See Section 2.1.2. Status Register (RST)). In order to enable Fault

Handling (See Section 6.2. Fault Handling), the bit 1 of RST must be set

to 0 and a valid Physical Address or, if Paging is enabled, a Logical

Address (See Section 7.3. Physical Address Space and Section 7.4.

Logical Address Space) must be set as the value of RFA.

Whenever a Fault occurs and RST bit 2 is set, the Current Task

Context is automatically saved by the CPU to the address pointed by RCT

14

(See Section 2.1.5.2. Current Task Register (RCT)) and the Base Task

Context is loaded from RBT (See Section 2.1.5.1. Base Task Register

(RBT)). See Section 8. Multi-Tasking for more information regarding this

topic.

The operating system routine responsible for Fault Handling may

identify which Faults occurred through RFF status.

2.1.5. Task Registers (RBT and RCT)

Task Registers aid the control of Task Contexts (See Section 8.3.

Context Switching). A Task Context may be defined as the state of the

Registers of a given task or process. The Task Context type is defined by

a Task Structure (See Section 8.1. Task Structure). For detailed

information regarding this topic, refer to Section 8. Multi-Tasking.

Two Task Registers are available for all LEG Architectures: Current

Task Register (RCT) and Base Task Register (RBT) (See Section 2.1.5.1.

Base Task Register (RBT) and Section 2.1.5.2. Current Task Register

(RCT)).

The RBT shall only be used by tasks running at Privilege Level 0

(see Section 3.1 Privilege Level 0), such as the Operating System Kernel

and it is specially designed for that purpose. The Task Context saved at

the memory address pointed by RBT is loaded every time an Interrupt or

a Fault occur and before calling any User or Architecture-specific Interrupt

Handling Routine or User-defined Fault Handling Routine. The Task

Context loaded under this circumstances will only update the Control

Registers, except RIP, RFF and RCT. General Purpose Registers,

Arithmetic Logic Registers and Floating Point Registers saved on RBT

location are ignored but may or may not be modified by Interrupt

Handling Routines and Fault Handling Routines (See Section 5.

Interrupts, Section 6. Faults, Section 2.1.5.1 Base Task Register (RBT)

and Section 2.1.5.2. Current Task Register (RCT)). The Task Context is

saved to RBT location every time a LTSK instruction is executed (See

Section 4.14. LTSK).

15

The RCT shall only point to Task Structures running at Privilege

Level 1 (see Section 3.2 Privilege Level 1), such as Operating System

User-Space tasks or processes. The Task Context is saved to RCT memory

address location every time an Interrupt or Fault occur and before calling

any User or Architecture-specific Interrupt Handling Routine or User-

defined Fault Handling Routine. All Registers states are saved. After this

operation is performed, RBT Task Context is loaded. The Task Context is

loaded from RCT every time a LTSK instruction is executed (See Section

4.14. LTSK). Before loading RCT Task Context, RBT Task Context is

saved.

2.1.5.1 Base Task Register (RBT)

The Base Task Register (RBT) is only active when the bit 2 of RST is

set to 1. If active, it must point to a valid Physical or Logical Address (See

Section 7.2. Physical Address Space and Section 7.3. Logical Address

Space) capable of storing a continuous memory region to hold data with

length of 116 bytes for LEG32 Architecture and 228 bytes for LEG64

Architecture (See Section 8.1. Task Structure). The CPU uses this register

to load the Base Task Context of the Operating System kernel task when

an Interrupt or Fault occur (See Section 5. Interrupts and Section 6.

Faults).

Only the Control Registers, except RIP, RFF and RCT, are loaded

from the Task Structure pointed by RBT address. General Purpose

Registers, Arithmetic Logic Registers and Floating Point Registers may or

may not be modified during the Interrupt or Fault occurrence. User-

defined Interrupt Handlers do not change non-Control Registers unless

the handler routine does so. For detailed information about this topic

please refer to Section 5. Interrupts and Section 6. Faults.

Whenever the Operating System needs to modify RBT address for

Task Structure relocation, it is recommended to disable Interrupts and

Fault Handling during the routine responsible for this modification.

16

The Base Task Context is saved at RBT address when a LTSK

instruction (See Section 4.14. LTSK) is executed to load CTR (See Section

2.1.6 Current Task Register (RCT)).

RBT shall always point to a Task Structure representing a Privilege

Level 0 task or a Machine Check Fault will occur when a Context Switch is

performed. Please refer to Section 3. Privilege Levels, Section 6.1.1.

Machine Check Fault and Section 8.3. Context Switching for more

information regarding this topic.

2.1.5.2 Current Task Register (RCT)

The Current Task Register (RCT) is only active when the bit 2 of

RST is set to 1. If active, it must point to a valid Physical or Logical

Address (See Section 7.3. Physical Address Space and Section 7.4.

Logical Address Space) capable of storing a continuous memory region to

hold data with length of 116 bytes for LEG32 Architecture and 228 bytes

for LEG64 Architecture (See Section 8.1. Task Structure). The CPU uses

this register to save the Current Task Context of the current running task

when an Interrupt or Fault occur (See Section 5. Interrupts and Section

6. Faults).

There is no way to force the CPU to save the current Task Context

through an instruction or any method other than an Interrupt or Fault

occurrence.

Saved Task Context may only be loaded by operating system tasks

running at Privilege Level 0 (See Section 3. Privilege Level) through the

instruction LTSK (See Section 4.14. LTSK). This instruction also causes

the Base Task Context to be saved to RBT address.

2.1.6. Paging Address Register (RPA)

The Paging Address Register (RPA) is only active when the bit 4 of

RST is set to 1. If active, it must point to a valid Physical Address (See

17

Section 7.3. Physical Address Space) capable of storing a continuous

memory region to hold data with length of 24 bytes for LEG32

Architecture and 48 bytes for LEG64 Architecture. The CPU uses this

register to load a Page Structure in order to perform Address Translations

(See Section 7.4.2. Address Translation).

It is imperative that this register points to a Physical Address since

there’s no way for the CPU to translate a Logical Address (See Section

7.3. Logical Address Space) before loading a Page Structure.

For more information regarding Paging, please refer to Section 7.4.

Paging.

2.1.7. Return Address Register (RRA)

The Return Address Register (RRA) shall point to a memory

reference capable to grow as it was a Stack Address Register (See

Section 2.1.8. Stack Address Register (RSA)). It stores the Return

Addresses when a CALL (See Section 4.7. CALL) instruction is performed.

The RET (See Section 4.8. RET) instruction reads the last 4 bytes on

LEG32 Architectures or the last 8 bytes on LEG64 Architectures that were

written by CALL in order to properly set the RIP.

Whenever a CALL instruction occurs, the next instruction address

after CALL is stored at the memory reference pointed by RRA. RRA

content is then incremented by the value of 4 on LEG32 Architecture or by

the value of 8 on LEG64 Architecture.

Whenever a RET instruction occurs, the RRA value is decremented

by 4 on LEG32 Architecture or by 8 on LEG64 Architecture and the value

stored at that memory reference is loaded onto RIP.

If Paging is enabled (See Section 7.4. Paging), it’s imperative that

the Page Permission (See Section 7.4.3. Page Permissions) of the Page

mapping the RRA memory region be set to Read-Only. Failing to do so will

cause a Page Permission Fault (See Section 6.1.10. Page Permission

18

Fault) to occur.

2.1.8. Stack Address Register (RSA)

The Stack Address Register (RSA) is reserved for Stack Memory

Management. If Paging (See Section 7.4. Paging) is enabled, it’s

recommended that the Page Permission (See Section 7.4.3. Page

Permissions) of the Page mapping the stack memory region shall be set

to Read-Only.

There are no implemented instructions that abstract the Stack

Memory Management in LEG Architecture. The RSA value must be

handled through instructions such as CPVL, CPVR, ARTH, LGIC, etc. (See

Section 4. Instruction Set).

The growth direction of stack in LEG Architecture is arbitrary.

2.1.9. Comparator Register (RCMP)

Comparator Register (RCMP) is a bit flag register responsible for

behavior modification of the CMP instruction (See Section 4.5. CMP). This

means that CMP instruction behaves differently, depending on the

configuration set at RCMP. Note that RCMP must be configured before

CMP instruction is performed.

RCMP instructs CMP on how to compare the values. The result of the

comparison is stored at bit 0 of RCMP after CMP is performed.

Table 2.3 describes permitted flags for RCMP.

More than one flag may be set to RCMP in order to perform

comparisons such as Greater Than or Equal, or Lesser Than or Equal, by

respectively setting the bits 4 and 2 and bits 4 and 3.

19

RCMP bit Description Obs.

0 Result of CMP instruction 0 is False, 1 is True

1 Not Equal -

2 Greater Than -

3 Lesser Than -

4 Equal -

(Table 2.3. Comparator Register Description)

2.1.10. Logic Register (RLGIC)

Logic Register (RLGIC) is a bit flag register responsible for behavior

modification of the LGIC instruction (See Section 4.10. LGIC). This means

that LGIC instruction behaves differently, depending on the configuration

set at RLGIC. Note that RLGIC must be configured before LGIC instruction

is performed.

RLGIC instructs LGIC on which operation will be performed on the

values. The result of the operation is stored at the target register LGIC

instruction.

Table 2.4 describes the permitted flags for RLGIC.

More than one flag may be set to RCMP in order to perform

operations such as XNOR, NAND or NOR, by respectively setting the bits 1

and 0, 2 and 0 and bits 3 and 0.

RLGIC bits ranging from 16 to 18 specify the number of LSBs

affected on the LGIC (See Section 4.10. LGIC) instruction operands. Only

RAL register operands are sensitive to these flags. Note that bit 18 is only

implemented on LEG64 Architecture. If set on LEG32 Architecture it will

cause a Bad Register Value Fault to occur (See Section 6.1.4. Bad

Register Value Fault). If all bits, ranging from 16 to 18, are cleared, the

operation is performed including all register bits.

20

RLGIC bit Description Obs.

0 NOT operation Requires two (2) operands.

1 XOR operation -

2 AND operation -

3 OR operation -

4 Shift Left operation -

5 Shift Right operation -

6 Rotate Left operation -

7 Rotate Right operation -

16 8-bit Operation (LSB) Only evaluated on RAL registers

17 16-bit Operation (LSB) Only evaluated on RAL registers

18 32-bit Operation (LSB)*
Only evaluated on RAL registers

*LEG64 Only

(Table 2.4. Logic Register Description)

2.1.11. Arithmetic Register (RARTH)

Arithmetic Register (RARTH) is a bit flag register responsible for

behavior modification of the ARTH instruction (See Section 4.9. ARTH).

This means that ARTH instruction behaves differently, depending on the

configuration set at RARTH. Note that RARTH must be configured before

ARTH instruction is performed.

RARTH instructs ARTH on which operation will be performed on the

values. The result of the operation is stored at the target register of the

ARTH instruction.

Table 2.5 describes the permitted flags for RARTH.

Operations involving signed values must have the bit 5 flag set at

RARTH.

21

RCMP bit Description Obs.

0 Multiplication -

1 Division -

2 Subtraction -

3 Addition -

4 Modulus -

5 Signed Operation Set to perform signed operations

6 Overflow Indicator Set when Overflow occur

7 Underflow Indicator Set when Underflow occur

8 Extended ALU Operand (RAL1) -

9 Extended ALU Operand (RAL2) -

10 Extended ALU Operand (RAL3) -

11 Extended ALU Operand (RAL4) -

12 Extended FPU Operand (RFP1) -

13 Extended FPU Operand (RFP2) -

14 Extended FPU Operand (RFP3) -

15 Extended FPU Operand (RFP4) -

16 8-bit Operation (LSB) Only evaluated on RAL registers

17 16-bit Operation (LSB) Only evaluated on RAL registers

18 32-bit Operation (LSB)*
Only evaluated on RAL registers

*LEG64 only

(Table 2.5. Arithmetic Register Description)

RARTH bits 6 and 7 are set when an arithmetic operation causes the

target register to respectively overflow or underflow its value.

The Overflow behavior is defined to reset all the bits of the register,

where the overflow occurred, when an additional MSB, beyond the

register size, was required during the arithmetic operation to represent

the result. This means, assuming that RARTH bits from 16 to 18 are

22

cleared, that the operation 0xFFFFFFFF + 0x03 will result in the value

0x02 (LEG32) with the RARTH bit 6 set indicating that an Overflow

occurred.

The Underflow behavior is defined to set all the bits of the register,

where the underflow occurred, to one when all its bits were set to 0

during the arithmetic operation. This means, assuming that RARTH bits

from 16 to 18 are cleared, that the operation 0x00000000 – 0x03 will

result in the value 0xFFFFFFFD (LEG32) with the RARTH bit 7 set

indicating that an Underflow occurred.

Extended ALU Operand (RARTH bits 8 to 11) and Extended FPU

Operand (RARTH bits 12 to 15) flags activate the corresponding register

to extend the target operand, being the target operand the least

significant part and the extended operand the most significant part. This

enables the possibility to perform 32-bit operations with 64-bit results on

LEG32 Architecture and 64-bit operations with 128-bit results on LEG64

Architecture. When one extended operand is active, neither the Overflow

nor Underflow flag will be set during the arithmetic operation.

RARTH bits ranging from 16 to 18 specify the number of LSBs

affected on the ARTH (See Section 4.9. ARTH) instruction operands. Only

RAL register operands are sensitive to these flags. Note that bit 18 is only

implemented on LEG64 Architecture. If set on LEG32 Architecture it will

cause a Bad Register Value Fault to occur (See Section 6.1.4. Bad

Register Value Fault). If all bits, ranging from 16 to 18, are cleared, the

operation is performed including all register bits.

2.2. General Purpose Registers (RGP1 to RGP8)

There are eight General Purpose Registers available on LEG

Architecture: RGP1, RGP2, RGP3, RGP4, RGP5, RGP6, RGP7 and RGP8.

These registers permit the following types of operations: Literal

Assignment, Memory Handling, Logic Operations, Arithmetic Operations

(excluding Floating Point Operations) and Comparisons.

23

Any General Purpose Register may be used along with any other

register in a given instruction that permits two registers as arguments.

Although Logic and Arithmetic Operations are permitted between

General Purpose Registers, it is strongly recommended the use of

Arithmetic Logic Registers for this purpose (See Section 2.1.13.

Arithmetic Logic Registers (RAL1 to RAL4)).

2.3. Arithmetic Logic Registers (RAL1 to RAL4)

There are four Arithmetic Logic Registers available on LEG

Architecture: RAL1, RAL2, RAL3 and RAL4.

Permitted operations for Arithmetic Logic Registers are: Literal

Assignment, Memory Handling, Logic Operations, Arithmetic Operations

(excluding Floating Point Operations) and Comparisons.

These are ALU (Arithmetic Logic Unit) registers, being highly

optimized for Arithmetic and Logic Operations. It is strongly

recommended that Arithmetic and Logic Operations involving the

instructions ARTH and LGIC should be performed directly on these

registers, since they are integrated in the ALU unit. Arithmetic and Logic

Operations are permitted on other registers, but the CPU needs to

internally copy the values from the non-RAL registers into RAL registers

before performing the requested operation. If non-RAL registers are used

for an Arithmetic or Logic Operation, the CPU will cache the values of two

RAL registers before copying the values of the non-RAL registers into it.

After the operation is completed, the previous values of the used RAL

registers are restored.

Arithmetic and Logic Operations involving Floating Point values are

required to be performed with Floating Point Registers (See Section

2.1.14. Floating-Point Registers (RFP1 to RFP4)).

24

2.4. Floating-Point Registers (RFP1 to RFP4)

There are four Floating-Point Registers available on LEG

Architecture: RFP1, RFP2, RFP3 and RFP4.

Permitted operations for Floating-Point Registers are: Literal

Assignment, Arithmetic Operations and Comparisons.

These registers are part of an ALU (Arithmetic Logic Unit) sub-

component called FPU (Floating-Point Unit), being highly optimized for

Floating-Point Arithmetic and Logic Operations.

Floating-Point Arithmetic Operations are required to be performed in

the Floating-Point Registers. The behavior for Floating-Point Operations

performed with non-RFP registers is unspecified.

25

3. Privilege Levels

LEG Architecture support two Privilege Levels of operation: Privilege

Level 0 and Privilege Level 1.

Privilege Level is selected by modifying RST bit 3.

Privilege Level 0 is the highest privilege level available. Code

executed at this privilege level is allowed to modify directly any CPU

register, except RIP. This level is granted for code being executed with

RST bit 3 unset. See Section 3.1. Privilege Level 0 for more information

regarding this topic.

Privilege Level 1 is the lowest privilege level available. Code

executed at this privilege level is only allowed to directly modify General

Purpose Registers, Arithmetic Logic Registers, Floating Point Registers and

the Control Registers RSA, RCMP, RLGIC and RARTH. This level is granted

for code being executed with RST bit 3 set. See Section 3.2. Privilege

Level 1 for more information regarding this topic.

Privilege Levels are also evaluated by Interrupt Handling Routines.

Architecture-specific Interrupt Handlers run at Privilege Level 0. Software

Interrupts that cause an Architecture-specific Interrupt Handlers to be

executed can only be performed by code running at Privilege Level 0 (Eg.

INTR 0x0A) (See Section 4.11. INTR). User-defined Interrupts may set

the minimum Privilege Level required to invoke the respective handler. For

more information regarding this topic, refer to Section 5. Interrupts.

3.1. Privilege Level 0

Privilege Level 0 is the highest privilege level available on LEG

Architecture. This privilege level shall be reserved for tasks or processes

requiring full control of CPU Configuration, Direct Hardware Access,

Memory Management, Task Management, Interrupt Handling and Fault

Handling. Refer to Section 2.1. Control Registers, Section 5. Interrupts,

26

Section 6. Faults, Section 7. Memory Management and Section 8. Multi-

Tasking for more information regarding these topics.

It is allowed to modify directly all registers for code running at this

privilege level except RIP that can only be indirectly modified by CALL and

RET instructions (See Section 4.7. CALL and Section 4.8. RET). There is

also no restrictions for any instructions referred in Section 4. Instruction

Set.

It is strongly recommended, when implementing a multi-task, multi-

user operating system based on LEG Architecture, that only the kernel

code should run at this privilege level. User-land tasks or processes

should always run at Privilege Level 1 (See Section 3.2. Privilege Level

1).

3.2. Privilege Level 1

Privilege Level 1 is the lowest privilege level available on LEG

Architecture. This privilege level shall be reserved for tasks or processes

that do not require direct access to hardware resources nor hardware

management.

Code running at this privilege level cannot modify any of the Control

Registers directly, except for RSA, RCMP, RLGIC and RARTH. The RIP

register can still be modified indirectly by CALL and RET instructions (See

Section 4.7. CALL and Section 4.8. RET). The instruction LTSK (See

Section 4.14. LTSK) is disabled at this level, causing an Illegal Instruction

Fault (See Section 6.1.7. Illegal Instruction Fault) if its execution is

attempted.

Software Interrupts are also disabled for Architecture-specific

Interrupts. Software Interrupts targeting User-defined Interrupts may or

may be enabled, depending on the privilege level set on the Interrupt

Vector (See Section 5.1. Interrupt Vector) for that routine. Attempts to

execute software interrupts reserved or configured to Privilege Level 0 will

cause a Privilege Fault to occur (See Section 6.1.12. Privilege Fault).

27

It is strongly recommended, when implementing multi-task, multi-

user operating systems based on LEG Architecture, that the User-land

tasks or processes run at this privilege level.

28

4. Instruction Set

LEG Architecture implements fourteen (14) instructions: CPVR,

CPVL, CPR, CPRR, CMP, JMP, CALL, RET, ARTH, LGIC, INTR, CEB, NOP

and LTSK.

These mnemonics are translated into opcodes by an assembler. The

opcode structure for the combination of operation and its operands is

described in Table 4.1 and Table 4.2.

The Register IDs for each LEG Architecture register are described in

Table 4.3.

Opcode Instruction ID Operands
Source

Operand

Target

Operand

0x000000ZZ Z 0 - -

0x0000YYZZ Z 1 Special Literal Y -

0x00XXYYZZ Z 2 Register Y Register X

0x0000YYZZ

0xNNNNNNNN
Z 2 Register Y Memory N

0x000000ZZ

0xNNNNNNNN
Z 1 Memory N -

0x000000ZZ

0xNNNNNNNN

0xKKKKKKKK

Z 2
Memory N

Literal N

Memory K

0x00XX00ZZ

0xNNNNNNNN
Z 2

Memory N

Literal N
Register X

(Table 4.1. Opcode Structure)

29

ID Description Type

XX Register Reference ID Operand

YY
Special Literal

Register Reference ID
Operand

ZZ Instruction ID Operation

NN
Literal

Memory Reference
Operand

KK Memory Reference Operand

(Table 4.2. ID descriptions of Table 4.1)

Register ID

RIP 0x00

RST 0x04

RFF 0x08

RFA 0x0C

RBT 0x10

RCT 0x14

RPA 0x18

RRA 0x1C

RSA 0x20

RCMP 0x24

RLGIC 0x28

RARTH 0x2C

RGP1 0x30

RGP2 0x34

RGP3 0x38

RGP4 0x3C

RGP5 0x40

30

RGP6 0x44

RGP7 0x48

RGP8 0x4C

RAL1 0x50

RAL2 0x54

RAL3 0x58

RAL4 0x5C

RFP1 0x60

RFP2 0x64

RFP3 0x68

RFP4 0x6C

(Table 4.3. Register ID Reference)

The next sub-sections (From Section 4.1. CPVR to Section 4.14.

LTSK) specify the opcodes for each Instruction and describe in detail their

operations.

4.1. CPVR

Mnemonic: CPVR

Instruction Opcode: 0x00000001

Maximum Operands: 2

Minimum Operands: 2

Source Operand Type: Register

Target Operand Type: Register, Memory Address

Maximum Clock Cycles: To be defined

Description: Copy the register contents referred in the source

operand to the target operand.

Opcodes Example:

CPVR RST, RGP1 # 0x00043001

31

CPVR RGP7, RFP1 # 0x00486001

CPVR RGP2, 0xAABBCCDD # 0x00003401 0xAABBCCDD

4.2. CPVL

Mnemonic: CPVL

Instruction Opcode: 0x00000002

Maximum Operands: 2

Minimum Operands: 2

Source Operand Type: Literal

Target Operand Type: Register, Memory Address

Maximum Clock Cycles: To be defined

Description: Copy a literal value from the source operand to the

target operand.

Opcode Example:

CPVL 0x12, RAL1 # 0x00500002 0x00000012

CPVL 0xAC, RSA # 0x00200002 0x000000AC

CPVL 0xABCD, 0x11223344 # 0x00000002 0x0000ABCD 0x11223344

4.3. CPR

Mnemonic: CPR

Instruction Opcode: 0x00000003

Maximum Operands: 2

Minimum Operands. 2

Source Operand Type: Register, Memory Address

Target Operand Type: Register, Memory Address

Maximum Clock Cycles: To be defined

Description: Copy the value referenced by the memory address in

the source operand to the target operand. If the source operand is a

register, its value is considered the memory address to copy the value

32

from.

Opcode Example:

CPR RSA, RGP1 # 0x00203003

CPR 0x3344, RSA # 0x00200003 0x00003344

CPR 0xAABB, 0xCCDD # 0x00000003 0x0000AABB 0x0000CCDD

4.4. CPRR

Mnemonic: CPRR

Instruction Opcode: 0x00000004

Maximum Operands: 2

Minimum Operands: 2

Source Operand Type: Register

Target Operand Type: Register

Maximum Clock Cycles: To be defined

Description: Copy the register contents referenced by the source

operand to the memory address location referenced by the value of the

target operand.

Opcode Example:

CPRR RGP3, RSA # 0x00382004

4.5. CMP

Mnemonic: CMP

Instruction Opcode: 0x00000005

Maximum Operands: 2

Minimum Operands: 2

Source Operand Type: Register

Target Operand Type: Register

Maximum Clock Cycles: To be defined

33

Description: Performs the comparison currently selected on RCMP

(See Section 2.1.9. Comparator Register (RCMP)) between the register

contents referenced by the source operand and the register contents

referenced by the target operand. The result of the comparison is stored

at RCMP bit 0. Also, CMP instruction clears RCMP bit 0 when it is

executed.

Opcode Example:

CMP RAL2, RGP5 # 0x00544005

4.6. JMP

Mnemonic: JMP

Instruction Opcode: 0x00000006

Maximum Operands: 1

Minimum Operands: 1

Source Operand Type: Register, Memory Address

Maximum Clock Cycles: To be defined

Description: Set the RIP (See Section 2.1.1. Instruction Pointer

Register (RIP)) register value to the memory address referenced by the

source operand. If the source operand is a register, its value is considered

the memory address to be set to RIP. This instruction has no effect is the

RCMP bit 0 is set to 0 (See Section 2.1.9. Comparator Register (RCMP)).

Opcode Example:

JMP 0x11EEFF # 0x00000006 0x0011EEFF

JMP RGP8 # 0x00004C06

4.7. CALL

Mnemonic: CALL

34

Instruction Opcode: 0x00000007

Maximum Operands: 1

Minimum Operands: 1

Source Operand Type: Register, Memory Address

Maximum Clock Cycles: To be defined

Description: Set the RIP (See Section 2.1.1. Instruction Pointer

Register (RIP)) register value to the memory address referenced by the

source operand. The memory address containing the instruction next to

CALL is pushed into the address referenced by RRA (See Section 2.1.7.

Return Address Register (RRA)).

Opcode Example:

CALL 0xAACCBBDD # 0x00000007 0xAACCBBDD

CALL RGP4 # 0x00003C07

4.8. RET

Mnemonic: RET

Instruction Opcode: 0x00000008

Maximum Operands: 0

Maximum Clock Cycles: To be defined

Description: Set the RIP (See Section 2.1.1. Instruction Pointer

Register (RIP)) register value to the memory address referenced by the

last pushed RRA address. This address is then popped from RRA. See

Section 2.1.7. Return Address Register (RRA).

Opcode Example:

RET # 0x00000008

35

4.9. ARTH

Mnemonic: ARTH

Instruction Opcode: 0x00000009

Maximum Operands: 2

Minimum Operands: 2

Source Operand Type: Register

Target Operand Type: Register

Maximum Clock Cycles: To be defined

Description: Performs the arithmetic operation selected on RARTH

(See Section 2.1.11. Arithmetic Register (RARTH)) between the source

and target operands. The result of the operation is stored at the target

operand. ARTH instruction clears the RARTH bits 6 and 7 when it is

executed.

Opcode Example:

ARTH RAL1, RAL3 # 0x00505809

ARTH RAL4, RAL2 # 0x005C5409

4.10. LGIC

Mnemonic: LGIC

Instruction Opcode: 0x0000000A

Maximum Operands: 2

Minimum Operands: 2

Source Operand Type: Register

Target Operand Type: Register

Maximum Clock Cycles: To be defined

Description: Performs the logic operation selected on RLGIC (See

Section 2.1.10. Logic Register (RLGIC)) between the source and target

operands. The result of the operation is stored at the target operand.

Opcode Example:

36

LGIC RAL3, RAL2 # 0x0058540A

LGIC RAL4, RAL1 # 0x005C500A

4.1.11. INTR

Mnemonic: INTR

Instruction Opcode: 0x0000000B

Maximum Operands: 1

Minimum Operands: 1

Source Operand Type: Literal

Maximum Clock Cycles: To be defined

Description: Causes a Software Interrupt. The source operand

indicates the Interrupt ID. See Section 5. Interrupts for more information

regarding this topic.

Opcode Example:

INTR 0x0A # 0x00000A0B

INTR 0x01 # 0x0000010B

4.1.12. CEB

Mnemonic: CEB

Instruction Opcode: 0x0000000C

Maximum Operands: 2

Minimum Operands: 2

Source Operand Type: Register, Memory Address

Target Operand Type: Register, Memory Address

Maximum Clock Cycles: To be defined

Description: Performs a parallel processing of the instruction block

starting at the memory address referenced by the source operand and

ending at the memory address referenced by the target operand. If the

37

source and/or target operand is a register, its value is considered the

memory address to start/end from/to.

Opcode Example:

CEB RGP1, RGP2 # 0x0030340C

CEB 0x4567, RGP3 # 0x0000380C 0x00004567

CEB 0xAA00, 0xAAFF # 0x0000000C 0x0000AA00 0x0000AAFF

Notes: An Illegal Instruction Fault (See Section 6.1.6. Illegal

Instruction Fault) will occur if the target operand value is lesser than or

equal to the value of the source operand, or if the specified range isn't

aligned to 32-bits.

4.1.13. NOP

Mnemonic: NOP

Instruction Opcode: 0x0000000D

Maximum Operands: 0

Maximum Clock Cycles: To be defined

Description: Increments the RIP value by 4.

Opcode Example:

NOP # 0x0000000D

4.1.14. LTSK

Mnemonic: LTSK

Instruction Opcode: 0x0000000E

Maximum Operands: 0

Maximum Clock Cycles: To be defined

Description: Load the Task Context from the Task Structure (See

38

Section 8.1. Task Structure) from the memory address referenced by the

register RCT and causes the Current Task Context to be saved at the

memory address referenced by the register RBT. See Section 2.1.5. Task

Registers (RBT and RCT) for more information regarding this topic.

Opcode Example:

LTSK # 0x0000000E

Notes: This is instruction may only be performed by code being

executed at the Privilege Level 0 (See Section 3.1. Privilege Level 0) or a

Privilege Fault (See Section 6.1.12. Privilege Fault) will occur. This

instruction has no effect if RST bit 2 is cleared (See Section 2.1.2. Status

Register (RST)).

39

5. Interrupts

Interrupts are asynchronous signals that indicate the CPU needs to

handle data at some location in the system. Interrupts may be caused by

hardware or by software, being the ones caused by hardware named

Hardware Interrupts and the ones caused by software named Software

Interrupts.

Software Interrupts are caused by the INTR instruction (See

Section 4.1.11. INTR) and are not affected by the RST bit 0 status (See

Section 2.1.2. Status Register (RST)). INTR instruction causes an

immediate context switch to an Interrupt Handler (See Section 5.4.

Interrupt Handling). Task Structures (See Section 8.1. Task Structure)

pointed by Task Registers (See Section 2.5. Task Registers (RBT and

RCT)) will be updated and loaded depending on whether the RST bit 2 is

set or cleared. If it is set, the Task Structure pointed by RCT will be

updated with the current CPU context and the Task Structure pointed by

RBT will be loaded as the current CPU context. The RIP (See Section

2.1.1. Instruction Pointer Register (RIP)) address will still point to the

INTR instruction address until all the requirements needed for the

execution of such interrupt are verified and granted. This grants that any

Fault (See Section 6. Faults) occurring during the validation process will

correctly identify the instruction that caused it.

Hardware Interrupts are caused by hardware devices, indicating

that they need the attention of the CPU to handle data. As it happens with

Software Interrupts, Hardware Interrupts also cause a context switch to

an Interrupt Handler that may be or may not be Trappable. When an

Hardware Interrupt occurs, it does not cause the cancellation of the

current instruction being executed. After the current instruction is

completed, the interrupt is triggered.

Trappable Interrupts are interrupts that does not ignore the

Interrupt Vector (See Section 5.1. Interrupt Vector) entry for their ID.

This means that the Interrupt Handler may be customized by the

Operating System. Note that the new configured Interrupt Handler for any

given Architecture-specific Interrupt does not override any possible

40

internal CPU handling routines implemented for that interrupt. The new

Interrupt Handler is always executed after this CPU handling routine, if

any is internally implemented for that given interrupt.

An Interrupt Handler is a procedure that may be internally executed

by the CPU (Architecture-specific Interrupts), or may be a user-defined

procedure which the starting address of the code may be configured in

the Interrupt Vector (User-defined Interrupts). See Section 5.1. Interrupt

Vector, Section 5.2. Architecture-specific Interrupts, Section 5.3. User-

defined Interrupts and Section 5.4. Interrupt Handling.

5.1. Interrupt Vector

The Interrupt Vector is a memory structure that allows the

operating system to configure Software Interrupt Handlers. The structure

of the Interrupt Vector is composed by 127 elements of two 32-bit fields

for LEG32 Architecture or one 64-bit field and one 32-bit field for LEG64

Architecture. The first field is a bit flag field and it is described in Table

5.1. The second field is the memory address that points to the start of the

handler code. The index of each element identifies the Interrupt ID for

which the corresponding handler will be executed.

Bit Description

0 Privilege Level (0 or 1)

1-31 Reserved

(Table 5.1. Interrupt Vector Entry Flags)

Interrupt Handlers configured in the Interrupt Vector with flag 0

cleared cannot be performed by Privilege Level 1 (See Section 3.1.

Privilege Level 1) code. Attempts to do so will cause a Privilege Fault

(See Section 6.1.12. Privilege Fault) to occur.

The first 31 entries of the Interrupt Vector are reserved for

Architecture-specific Interrupts. The entries ranging from 32 to 127 are

reserved for User-defined Interrupts.

41

Customized Interrupt Handlers may be assigned to all User-defined

Interrupts and for Trappable Architecture-specific Interrupts. The

Operating System can perform such assignments through the INTR 0x01

instruction. Non-Trappable Architecture-specific Interrupts ignore their

corresponding entry at the Interrupt Vector. Reserved entries belonging

to the range of Architecture-specific Interrupts are considered Non-

Trappable, except for those in the entry ID range 21-31 which are

reserved for implementation specific interrupts (See Section 1.6.

Expansibility and Extensions). All User-defined Interrupts are considered

Trappable.

Interrupt Vector address is unmodifiable and its located at the

Memory Region 0x000-0x3F8 (127 * 8 bytes) on LEG32 Architecture and

0x000-0x5F4 (127 * 12 bytes) on LEG64 Architecture. See Section 7.1.

Reserved Memory Regions for more information regarding Reserved

Memory Regions.

It is strongly recommended the reading of Section 4.1.11. INTR,

Section 5.2.1. Interrupt Vector Configuration Interrupt, Section 5.3.

User-defined Interrupts and Section 5.4. Interrupt Handling for more

information regarding this topic.

5.2. Architecture-specific Interrupts

Architecture-specific Interrupts are interrupts internally handled by

the CPU. Their behavior is not allowed to be modified. This means that

there’s no way to change the internal handler routine executed by the

CPU. However, if the Interrupt is Trappable (See Section 5.1. Interrupt

Vector), a customized Interrupt Handler can be assigned to the interrupt

that will be executed right after the internal handler routine termination.

Architecture-specific Interrupts handle software and hardware

events, such as Storage I/O requests, Display Output requests, Keyboard

Input requests, Bad hardware detections, Interrupt Vector Configuration,

etc.

42

The list of Architecture-specific Interrupts are described in detail in

the following subsections, from Section 5.2.1. Interrupt Vector

Configuration Interrupt to Section 5.2.8. Timer Expiration Interrupt.

5.2.1. Interrupt Vector Configuration Interrupt

ID: 0x01

Type: Software Interrupt

Instruction: INTR 0x01

Parameters: RGP1, RGP2, RGP3

Required Privilege: Privilege Level 0

Faults: Permission Fault,

Bad Operation Value Fault

Trappable: No

Description: Setup a new handler routine which code starts at

Memory Address pointed by RGP3 value, with flags field defined by the

value of RGP2, for the Interrupt ID defined by the value of RGP1. If

Privilege Level for the task causing this interrupt is different than 0,

Permission Fault will occur. If the Interrupt ID specified in RGP1 is invalid,

a Bad Operation Value Fault will occur. To disable a previously configured

Interrupt Handler for a given Interrupt ID, a INTR 0x01 instruction must

be performed with RGP2 and RGP3 set to zero (0).

Notes: If a Fault occur, the fourth octet of RFF stores the Interrupt

ID and the RFF bit 13 is set in order to indicate the occurring fault was

caused by an Interrupt (See Section 2.1.3. Fault Flags Register (RFF)

and Section 6.1.14. Interrupt Fault).

5.2.2. Halt System Interrupt

ID: 0x03

Type: Software Interrupt

Instruction: INTR 0x03

Parameters: -

43

Required Privilege: Privilege Level 0

Faults: Permission Fault

Trappable: No

Description: Halts the CPU. If Privilege Level for the task causing

this interrupt is different than 0, Permission Fault will occur.

Notes: If a Fault occur, the fourth octet of RFF stores the Interrupt

ID and the RFF bit 13 is set in order to indicate the occurring fault was

caused by an Interrupt (See Section 2.1.3. Fault Flags Register (RFF)

and Section 6.1.14. Interrupt Fault).

5.2.3. Keyboard Input Interrupt

ID: 0x09

Type: Hardware Interrupt

Instruction: -

Parameters: RGP1

Required Privilege: -

Faults: Input/Output Operation Fault

Trappable: Yes

Description: Indicates that the input from the keyboard occurred.

The input data is stored at register RGP1. An Input/Output Operation

Fault (See Section 6.1.13. Input/Output Operation Fault) will occur if a

failure receiving the keyboard data is detected.

Notes: If a Fault occur, the fourth octet of RFF stores the Interrupt

ID and the RFF bit 13 is set in order to indicate the occurring fault was

caused by an Interrupt (See Section 2.1.3. Fault Flags Register (RFF)

and Section 6.1.14. Interrupt Fault).

44

5.2.4. Display Output Interrupt

ID: 0x0A

Type: Software Interrupt

Instruction: INTR 0x0A

Parameters: RGP1

Required Privilege: Privilege Level 0

Faults: Permission Fault,

Input/Output Operation Fault

Trappable: No

Description: Reads the least significant byte (see Section 1.2.

Endianess) from RGP1 as an ASCII code and sends it to Display Output. If

Privilege Level for the task causing this interrupt is different than 0,

Permission Fault will occur. If an error occur while communicating with

display output, a Input/Output Operation Fault will occur (See Section

6.1.13. Input/Output Operation Fault).

Notes: If a Fault occur, the fourth octet of RFF stores the Interrupt

ID and the RFF bit 13 is set in order to indicate the occurring fault was

caused by an Interrupt (See Section 2.1.3. Fault Flags Register (RFF)

and Section 6.1.14. Interrupt Fault).

5.2.5. Storage I/O Interrupt

ID: 0x0B

Type: Software Interrupt

Instruction: INTR 0x0B

Parameters: RGP1, RGP2, RGP3, RGP4, RGP5

Required Privilege: Privilege Level 0

Faults: Permission Fault, Bad Operation Value Fault,

Bad Memory Reference Fault,

Input/Output Operation Fault

Trappable: No

Description: Performs an Input/Output operation on a storage

45

device identified by the Storage ID in the 2 least significant bytes of the

RGP1 value. The 2 most significant bytes of RGP1 are a bit flag field for

interrupt parameterization. Table 5.2 describes the acceptable flags:

RGP1 bit Description

16 Read Operation

17 Write Operation

18 Extended Offset

(Table 5.2. Storage I/O Interrupt RGP1 flags)

The Extended Offset flag indicates that the data offset to be

accessed is beyond the value that a 32bit unsigned integer can represent.

If this bit isn’t set, RGP2 holds the data offset value. If it is set, RGP5

extends the data offset value for an additional 32bits, meaning that a

64bit data offset can be represented (the RGP1 bit 18 state and the

register RGP5 is ignored on LEG64 Architecture). RGP3 value indicates the

length of the data to be read or written. RGP4 value represents the

Memory Address from where the data should be read in the case of a

storage write operation, or the Memory Address to where the data should

be written in the case of a storage read operation.

Notes: If a Fault occur, the fourth octet of RFF stores the Interrupt

ID and the RFF bit 13 is set in order to indicate the occurring fault was

caused by an Interrupt (See Section 2.1.3. Fault Flags Register (RFF) and

Section 6.1.14. Interrupt Fault).

5.2.6. Page Cache Invalidation Interrupt

ID: 0x0D

Type: Software Interrupt

Instruction: INT 0x0D

Parameters: RGP1

Required Privilege: Privilege Level 0

Faults: Permission Fault

Trappable: No

46

Description: Informs the CPU that the page identified by

the Base Physical Address (See Section 7.4. Paging) value set on RGP1

should be invalidated if it resides in the CPU page caching mechanism.

Notes: If a Fault occur, the fourth octet of RFF stores the Interrupt

ID and the RFF bit 13 is set in order to indicate the occurring fault was

caused by an Interrupt (See Section 2.1.3. Fault Flags Register (RFF)

and Section 6.1.14. Interrupt Fault).

5.2.7. Timer Configuration Interrupt

ID: 0x0F

Type: Software Interrupt

Instruction: INTR 0x0F

Parameters: RGP1,RGP2,RGP3

Required Privilege: Privilege Level 0

Faults: Bad Operation Value Fault, Permission Fault

Trappable: No

Description: Configure an internal CPU Timer (See

Section 9. Timers) identified by the Timer ID value on RGP1, with

Granularity specified on RGP2 and Time to Expiration value on RGP3. The

granularity may be expressed in nanoseconds (RGP2 bit 0 set),

microseconds (RGP2 bit 1 set), milliseconds (RGP2 bit 2 set) or seconds

(RGP2 bit 3 set). The granularity defines the magnitude of the RGP3

value. Note that RGP2 flags are mutual exclusive. If more than one flag is

set, a Bad Operation Value Fault will occur. This fault will also occur if the

ID set on RGP1 value is invalid. Permission Fault occur if a task or process

running at Privilege Level 1 attempts to setup a Timer.

Notes: If a Fault occur, the fourth octet of RFF stores the Interrupt

ID and the RFF bit 13 is set in order to indicate the occurring fault was

caused by an Interrupt (See Section 2.1.3. Fault Flags Register (RFF)

and Section 6.1.14. Interrupt Fault).

47

5.2.8. Timer Expiration Interrupt

ID: 0x10

Type: Hardware Interrupt

Instruction: -

Parameters: RGP1

Required Privilege: -

Faults: -

Trappable: Yes

Description: Indicates that the Timer identified by the

RGP1 value has expired.

5.3. User-defined Interrupts

User-defined Interrupts are a set of configurable Software

Interrupts. A process running at Privilege Level 0 may configure an

Interrupt Handler routine in the Interrupt Vector that will be executed

when the instruction INTR is performed for that Interrupt ID as its

operand (See Section 4.11. INTR). These interrupts can be configured to

be permitted to be executed by tasks or processes running on any

Privilege Level of the CPU. If it is intended that a User-defined Interrupt

Handler Routine shall be permitted for either Privilege Level 0 and

Privilege Level 1 tasks or processes, its flags field at the Interrupt Vector

shall indicate so. See Section 5.1. Interrupt Vector for more information

regarding this topic.

There are 96 User-defined Interrupts available, ranging from

Interrupt Vector entry 32 to entry 127.

See Section 5. Interrupts, Section 5.1. Interrupt Vector and

Section 5.4. Interrupt Handling for more information regarding this topic.

48

5.4. Interrupt Handling

Interrupt Handling is the capability to handle Interrupts through

Interrupt Handler Routines. An Interrupt Handler is a procedure that take

actions to properly handle an Interrupt. Interrupt Handlers may be either

internal CPU routines or user-defined routines. See Section 5.2.

Architecture-specific Interrupts and Section 5.3. User-defined

Interrupts.

For user-defined routines the Interrupt Vector should be properly

configured to cause the CPU to execute the custom Interrupt Handler

when a given Interrupt occurs. See Section 5.1. Interrupt Vector for

more information regarding this topic.

Notes: It is important to note that initial communication with

external hardware devices is mostly performed via Interrupt Handlers on

LEG Architectures. The full understanding of Interrupt mechanism for LEG

Architecture is required in order to implement efficient operating systems

based on this architecture. See Section 5. Interrupts and all its sub-

sections for detailed information regarding Interrupts.

49

6. Faults

Faults occur when the CPU detects a state that it is unable to handle

by itself. Usually these states can be interpreted and handled by the

operating system, forcing the CPU to return to a state where it is possible

to continue its execution in a non-fault state. A routine that interpret a

Fault state and force the CPU to return to a non-fault state is called a

Fault Handler. Fault Handlers can be configured through the RST and RFA

register (See Section 2.1.2. Status Register (RST) and Section 5.1.4.

Fault-Handler Address Register (RFA)).

If a Fault occurs and RST bit 1 is set, the CPU execution is halted.

This means that the CPU won’t recover from the Fault State until it is

restarted.

The next section describes the possible Fault States (Section 6.1.

Fault States) that can be detected by the CPU.

6.1. Fault States

Fault States are machine state conditions that the CPU cannot

handle by itself and require operating system procedures to allow the CPU

to recover from a Fault State to a non-Fault State to avoid a halt state.

Unhandled faults will cause the CPU to halt its execution and will require a

CPU restart.

The following sub-sections (from Section 6.1.1. Machine Check

Fault to Section 6.1.14. Interrupt Fault) describe the possible Fault

States implemented in LEG Architecture.

6.1.1. Machine Check Fault

RFF bit: 0

Caused By: Bad Hardware

Handleable: No

50

Description: This state may occur when an internal CPU

component or external hardware device that communicate directly with

the CPU behaves unexpectedly, or when an unrecoverable fault state is

detected. Two practical examples that may cause this fault to occur are

the CPU being unable to communicate with system memory due to a

system bus failure, or when the Task Structure pointed by RBT isn't a

Privilege Level 0 task. Please refer to Section 2.1.2. Status Register

(RST), Section 2.1.5.1. Base Task Register (RBT), Section 3. Privilege

Levels and Section 8.1. Task Structure for more information regarding

this topic.

6.1.2. Bad Memory Reference Fault

RFF bit: 1

Caused By: An invalid memory reference was used as an

operand of an instruction.

Handleable: Yes

Description: This state occur when an invalid memory reference

is used as an operand on a memory operation instruction. A practical

example that cause this state is the use of a memory reference beyond

the available system memory or the use of memory reference that points

to a Reserved Memory Region (See Section 7.1. Reserved Memory

Regions).

6.1.3. Bad Register Reference Fault

RFF bit: 2

Caused By: Invalid Register ID detected on an Instruction

Opcode.

Handleable: Yes

Description: This state occur when a valid Instruction Opcode is

interpreted, but one of its operands references an invalid Register ID. See

51

Section 4. Instruction Set for more information regarding Register IDs

and Instruction Opcodes.

6.1.4. Bad Register Value Fault

RFF bit: 3

Caused By: Unexpected Register Value

Handleable: Yes

Description: This state occur when a CPU Register is set with

an unexpected value. A practical example that cause this state is the use

of reserved flags or an unspecified combination of flags on Control

Registers (See Section 2.1. Control Registers)

6.1.5. Bad Operation Value Fault

RFF bit: 4

Caused By: An unexpected value was detected while

performing an operation.

Handleable: Yes

Description: This state occur when an unexpected operand

references a value for an instruction that is unable to handle it. A practical

example that cause this state is the INTR 0x01 instruction with RGP2

register set to some value greater than 127. This instruction will request a

modification in the Interrupt Vector at an entry greater than 127. The

Interrupt Vector only addresses 127 entries. See Section 4.1.11. INTR

and Section 5.1. Interrupt Vector.

6.1.6. Illegal Interrupt Fault

RFF bit: 5

Caused By: Illegal operand value for INTR instruction.

Handleable: Yes

52

Description: This state occur when an invalid Software

Interrupt ID is used as operand value for the INTR instruction.

6.1.7. Illegal Instruction Fault

RFF bit: 6

Caused By: An unspecified opcode was loaded into RIP

register.

Handleable: Yes

Description: This state occur when an unspecified instruction

opcode referenced by RIP register value was tried to be executed. See

Section 4. Instruction Set for more information regarding instruction

opcodes.

6.1.8. Floating Point Unit Fault

RFF bit: 7

Caused By: An exception occurred during a Floating Point

Operation at the FPU.

Handleable: Yes

Description: This state occur when an exception is detected

while performing a Floating Point Operation in the FPU. A practical

example that cause this state is an arithmetic operation involve RFP

registers that attempts to divide a value by zero. See Section 1.3.

Floating-Point Numbers for more information regarding Floating Point

Operations.

6.1.9. Arithmetic Logic Unit Fault

RFF bit: 8

Caused By: An exception occurred during an Arithmetic or

53

Logic Operation at the ALU.

Handleable: Yes

Description: This state occur when an exception is detected

while performing an Arithmetic or Logic Operation at the ALU. A practical

example that cause this state is an arithmetic operation involving RAL

registers that attempts to divide a value by zero.

6.1.10. Page Permission Fault

RFF bit: 9

Caused By: Operation not permitted on a Logical Address

Reference.

Handleable: Yes

Description: This state occur when the CPU attempts to

perform an operation that is not permitted over a Logical Address due to

its Page Permissions (See Section 7.4.3. Page Permissions) or an invalid

combination of permission were used in the Flags field of Page Structure

(See Section 7.4.1. Page Structure). A practical example that cause this

state is the attempt to write a read-only Page or a code execution attempt

on a non-executable Page.

6.1.11. Page Fault

RFF bit: 10

Caused By: A Page, needed to translate a Logical Address,

wasn’t found

Handleable: Yes

Description: This state occur when a Logical Address is

referenced by an memory handling operation and the CPU was unable to

find a Page to translate it to a Physical Address. See Section 7.4.2.

Address Translation for more information regarding this topic.

54

6.1.12. Privilege Fault

RFF bit: 11

Caused By: Code running at Privilege Level 1 attempted a

Privilege Level 0 operation.

Handleable: Yes

Description: This state occur when a task or process running at

Privilege Level 1 attempts to perform an operation that is only permitted

at Privilege Level 0. A practical example that cause this state is an

attempt to execute LTSK instruction (See Section 4.1.14. LTSK) with RST

bit 3 set. See Section 2.1.2. Status Register (RST) and Section 3.

Privilege Levels for more information regarding this topic.

6.1.13. Input/Output Operation Fault

RFF bit: 12

Caused By: An Input/Output Operation has failed due to

communication problems with an external

hardware device.

Handleable: Yes

Description: This state occur when an Input/Output operation

have failed due to a communication problem while interacting with an

external hardware device. This Fault may be caused due to an Interrupt

that was performing an Input/Output operation. See Section 5.3.

Keyboard Input Interrupt, Section 5.4. Display Output Interrupt and

Section 5.5. Storage I/O Interrupt for more information regarding this

fault state.

6.1.14. Interrupt Fault

RFF bit: 13

Caused By: -

Handleable: -

55

Description: This special RFF flag does not indicate a Fault

State, but that some Fault State set at RFF was caused while executing an

Architecture-specific Interrupt Handler. The Interrupt ID for which the

handler was being executed is stored at the fourth octet of RFF register.

See Section 2.1.3. Fault Flags Register (RFF) and Section 5.2.

Architecture-specific Interrupts for more information regarding this

topic.

6.2. Fault Handling

Fault Handling is the capability to handle Fault States through Fault

Handler Routines. A Fault Handler Routine is responsible to recover the

CPU from a Fault State into a non-Fault State. Fault Handling is disabled

by default when the CPU is initialized. To enable Fault Handling, the RST

bit 1 shall be set (See Section 2.1.1. Status Register (RST)).

LEG Architecture implements a Control Register called RFA (See

Section 2.1.4. Fault-Handler Address Register (RFA)) which value shall

point to a Logical or Physical Address, depending on the RST bit 4 state

(See Section 2.1.1. Status Register (RST)), that contain an Operating

System routine responsible for handling Fault States. The Operating

System will be able to identify the Fault State through the RFF register

(See Section 2.1.3. Fault Flags Register (RFF)) and take appropriate

actions to recover CPU to a non-Fault State.

If Fault Handling is enabled and no action is taken in the routine

pointed by RFA for a occurred Fault, the CPU will enter in an endless loop

if the Fault was caused by an instruction, since this instruction will be

restarted after the Fault Handler routine completes.

It is important to note that the Operating System is responsible to

clear RFF register after the Fault Handler completes all its procedures.

See Section 6. Faults and Section 6.1. Fault States for more

information regarding these topics.

56

7. Memory Management

This section intends to describe the implemented features on LEG

Architecture for memory management. It will also describe recommended

practices and implementation choices that can be implemented in an

Operating System intended to run on a LEG Architecture CPU.

A LEG Architecture CPU can access memory through two different

addressing modes: Physical Address Access and Logical Address Access.

Physical Addresses are memory references that directly point to a

system memory address, while Logical Addresses are Virtual Memory

Addresses that need to be translated to their respective Physical Address

through an Address Translation (See Section 7.4.2. Address Translation)

mechanism before the data can be accessed.

The Operating System may choose whether a task should use or not

Virtual Memory by properly configuring the RST bit 4 (See Section 2.1.2.

Status Register (RST)). Paging, or Virtual Memory, is enabled on a per

Task Context basis, which means that the Operating System is able

manage tasks using Logical Addressing and tasks using Physical

Addressing depending on the RST bit 4 status for each task. See Section

2.1.6. Paging Address Register and Section 7.4. Paging for more

information regarding this topic.

7.1. Reserved Memory Regions

LEG Architecture specifies memory regions that cannot be accessed

directly by the Operating System. Attempts to do so will generate a Bad

Memory Reference Fault (See Section 6.1.2. Bad Memory Reference

Fault).

Usually these regions are configurable CPU data structures that

require a specific Instruction or Interrupt to perform operations over its

contents.

57

Table 7.1 specifies the Reserved Memory Regions that cannot be

accessed directly:

From To Description

0x000 0x3F8 Interrupt Vector (LEG32)

0x000 0x5F4 Interrupt Vector (LEG64)

(Table 7.1. Reserved Memory Regions)

For more information regarding Interrupt Vector, please refer to

Section 5.1. Interrupt Vector.

7.2. Physical Address Space

Physical Address Space is specified as being the total addressable

space of the total available system memory. A Physical Address value

addresses a real position in the system memory. Instructions executed

from an Operating System task with Paging disabled (RST bit 4 unset)

that reference a memory address, will instruct the CPU to directly access

that address in system memory. (See Section 2.1.2. Status Register

(RST) and Section 7.4. Paging)

Physical Address Space management does not implement a

Permissions mechanism to permit or deny accesses for a given memory

reference being referenced by an Instruction. In order to grant certain

access Permissions to specific memory region, Paging must be enabled

(See Section 7.4. Paging).

7.3. Logical Address Space

Logical Address Space, also known as Virtual Memory, is an address

space whose referenced memory addresses do not point directly to a

Physical Address. They instead refer to a logical value that needs to be

translated through an Address Translation mechanism that is

implemented as part of the Paging mechanism (See Section 7.4. Paging).

58

Logical Address Translations (See Section 7.4.2. Address

Translation) are internally performed by the CPU which loads the Paging

Address Register (See Section 2.1.6. Paging Address Register (RPA))

value and looks for Page Structures (See Section 7.4.1. Page Structure)

in order to identify which Page describes the referenced Logical Address.

Once identified, the CPU translates that Logical Address into a Physical

Address. After translation routine is completed, the Physical Address is

accessed and the requested operation over its contents is performed.

If the CPU fails to find no Page describing the referenced Logical

Address, a Page Fault occur (See Section 6.1.11. Page Fault).

7.4. Paging

Paging is a mechanism that allows the translation of Logical

Addresses into their respective Physical Addresses through an Address

Translation (See Section 7.4.2. Address Translation) mechanism,

validating the Page Permissions (See Section 7.4.3. Page Permissions)

for that Logical Address, based on the operation being performed over it.

It permits the implementation of Virtual Memory Management

approaches, bringing the possibility to map non-contiguous physical

memory blocks into linear virtual address blocks. This can greatly reduce

the complexity of the Operating System Memory Management mechanism

and allow improved security since Pages implement a permission

mechanism (See Section 7.4.3. Page Permissions).

The following sub-sections (from Section 7.4.1. Page Structure to

Section 7.4.3. Page Permissions) will describe, in detail, how the Paging

mechanism is implemented in LEG Architectures and how it behaves.

7.4.1. Page Structure

A Page Structure is a data structure that instructs how the CPU will

59

translate Logical Addresses into Physical Addresses (See Section 7.4.2.

Address Translation) and evaluate the permitted operations over those

memory addresses.

A Page Structure maps a Virtual Memory Region (or Logical Address

Region) into a Physical Memory Region by describing base pointers to

Logical and Physical Addresses, the respective Size of the region, the

permissions of the region, and two pointers that will point to the next and

previous Page belonging to same Task Address Space (See Section 8.2.

Task Address Space).

The Operating System is responsible for creating and managing

Page Structures. Each time a Logical Address is referenced, the CPU will

try to find the correct Page Structure by first loading a Page Structure

from the RPA (See Section 2.1.6. Paging Address Register (RPA)) value

and lookup for an entry that describes that Logical Address in order to

evaluate its permissions and to correctly translate it to a Physical Address.

Page Structure for LEG32 Architecture is specified in Table 7.2.

Page Structure for LEG64 Architecture is specified in Table 7.3.

The Flags field options are specified in Table 7.4.

Field Size Description

Base Logical Address 32bit 32-bit value for Base Logical Address

Base Physical Address 32bit 32-bit value for Base Physical Address

Size 32bit Size of the memory region

Flags 32bit Bit flag field

Next Page 32bit Pointer to the next page

Previous Page 32bit Pointer to the previous page

(Table 7.2. Page Structure for LEG32 Architecture)

60

Field Size Description

Base Logical Address 64bit 64-bit value for Base Logical Address

Base Physical Address 64bit 64-bit value for Base Physical Address

Size 64bit Size of the memory region

Flags 64bit Bit flag field

Next Page 64bit Pointer to the next page

Previous Page 64bit Pointer to the previous page

(Table 7.3. Page Structure for LEG64 Architecture)

Bit Description

0 Read-Only Permission

1 Read/Write Permission

2 Executable Permission

(Table 7.4. Page Structure Flags Description)

Note that bits 0 and 1 of Page Structure Flags are mutual exclusive

(See Section 7.4.3. Page Permissions). If a Page Flags is found to have

both bit 0 and bit 1 set, a Page Permission Fault will occur (See Section

6.1.10. Page Permission Fault).

7.4.2. Address Translation

Address Translation is a mechanism used by the CPU to translate

Logical Addresses into Physical Addresses.

When a Task, with Paging enabled (See Section 2.1.2. Status

Register (RST)), references a Logical Address in a memory operation, the

CPU will try to find a suitable Page, through all the Page Structures

defined for that task, that maps the memory region containing that

Logical Address. This mechanism is known as Page Lookup. It is important

to note that the Operating System is responsible to properly set the RPA

register (See Section 2.1.6. Paging Address Register (RPA)) value to

61

point to a valid Page Structure (See Section 7.4.1. Page Structure) entry

belonging to the current Task Address Space (See Section 8.2. Task

Address Space).

After a suitable Page is identified, the CPU will first evaluate the

Permissions for that Page and grant that the requested operation can be

performed. If this sanity check fails, a Page Permission Fault will occur

(See Section 6.1.10. Page Permission Fault). If the CPU is unable to find

a suitable Page containing the referenced Logical Address, a Page Fault

will occur (See Section 6.1.11. Page Fault).

In order to identify if a Page is suitable for the translation (Page

Lookup), the CPU load the Page Structure pointed by the RPA register and

performs the following operations:

• Verify if the referenced Logical Address value is greater than the

Base Logical Address value found in the current Page Structure.

• Add the Size value of the current Page Structure to the Base

Logical Address.

• Verify if the referenced Logical Address value is lesser than the

computed value in the previous step.

• Return success if the last condition is true.

• If the last condition is false, it loads the Next pointer as a Page

Structure and performs all the previous operations again.

Being a suitable Page identified and the permissions verification

successfully passed (See Section 7.4.3. Page Permissions), the CPU will

perform the following operations:

• Compute the offset of the referenced Logical Address from the

Base Logical Address value found in the current Page Structure.

• Add that offset to the Base Physical Address value found in the

Page Structure.

• Return the computed value as the translated Physical Address.

62

7.4.3. Page Permissions

Each Page Structure contains a field named Flags (See Section

7.4.1. Page Structure) that allow the Operating System to configure the

memory operations that may be performed over the memory region

described by that Page.

Three permission options can be configured for a Page:

• Read-Only Permission

• Read/Write Permission

• Executable Permission

The Read-Only Permission and Read/Write Permission are mutual

exclusive. If both are set, a Page Permission Fault (See Section 6.1.10.

Page Permission Fault) will occur. For information regarding Page

Permissions configuration, please refer to Section 7.4.1. Page Structure.

In order to evaluate if the requested operation over a Logical

Address is permitted, the CPU performs the following steps:

• Evaluate if the operation is a Read, a Write, or an Instruction

execution.

• If the operation is a Read, the flag Read-Only or Read/Write must

be set. If none of these flags are set, a Page Permission Fault will

occur.

• If the operation is a Write, the flag Read/Write must be set. If

not set, a Page Permission Fault will occur.

• If the operation is an Instruction execution, the flag Executable

must be set. If not set, a Page Permission Fault occur.

• By successfully passing all the previous sanity checks, the

operation is granted.

The steps described above are known as Permission Check

mechanism. They are performed after Page Lookup and before the

Address Translation. If the permission check fails, Address Translation

won’t be performed.

63

8. Multi-Tasking

LEG Architecture specifies two Control Registers, called Task

Registers (See Section 2.1.5. Task Registers), intended to allow the

implementation of Multi-Tasking Operating Systems through a Context

Switching mechanism (See Section 8.3. Context Switching).

These registers are intended to point to Task Structures (See

Section 8.1. Task Structure). The memory addresses whose Task

Registers point to are managed by the Operating System.

The RBT register (See Section 2.1.5.1. Base Task Register (RBT))

should point to the Task Structure of Operating System kernel task, while

the RCT (See Section 2.1.5.2. Current Task Register (RCT)) should point

to the Task Structure of the current user-land task.

When a Context Switch occur, Task Registers are internally

evaluated by the CPU in order to load or save the current registers’ states

into the respective Task Structure the register points to. Refer to Section

8.3. Context Switching for more information regarding this topic.

8.1. Task Structure

A Task Structure is a data structure that allows the CPU to save

Task Contexts whenever a Context Switch occur. This concept allows the

Operating System to manage different tasks without losing their contexts

whenever a Context Switch occur (See Section 8.3. Context Switching).

The data structure that describes a Task Structure for LEG32

Architecture is specified in Table 8.1. For LEG64 Architecture, the Task

Structure is specified in Table 8.2.

64

Field Size Description

Registers 112 bytes
Registers’ contents.

Size: 28 registers times 32-bits

Process ID 4 bytes Unique task or process identifier

(Table 8.1. Task Structure Description for LEG32 Architecture)

Field Size Description

Registers 224 bytes
Registers’ contents.

Size: 28 registers times 64-bits

Process ID 4 bytes Unique task or process identifier

(Table 8.2. Task Structure Description for LEG64 Architecture)

The Registers Field can be viewed as a sub-structure that describe

all the implemented registers. The order in which the registers must be

placed is: RIP, RST, RFF, RFA, RBT, RCT, RPA, RRA, RSA, RCMP, RLGIC,

RARTH, RGP1, RGP2, RGP3, RGP4, RGP5, RGP6, RGP7, RGP8, RAL1,

RAL2, RAL3, RAL4, RFP1, RFP2, RFP3 and RFP4.

Task Structures location in system memory must be managed by

the Operating System. The Operating System shall then properly set RBT

and RCT registers values to correctly point to the Task Structures. See

Section 2.1.5. Task Registers (RBT and RCT) for more information

regarding this topic.

8.2. Task Address Space

A Task Address Space is considered to be all the memory regions

used by a task or process. This includes all the Heap, Stack and Code

memory regions.

When Paging (See Section 7.4. Paging) is disabled, this concept

may be ignored. When Paging is enabled for a given task, the Task

Address Space is then considered as all the Page Structures (See Section

65

7.4.1. Page Structure) belonging to that task and at least one Page

Structure must be pointed by the RPA register (See Section 2.1.6. Paging

Address Register (RPA)) in order to the CPU identify at least one Page

Structure belonging to that task.

8.3. Context Switching

A Context Switch is considered to be an interruption of code

execution on the current context by the CPU in order to handle another

event that requires the immediate attention of the CPU.

Context Switching occur whenever an Interrupt (See Section 5.

Interrupts) or Fault (See Section 6. Faults) occur or when a LTSK

instruction (See Section 4.14. LTSK) is executed. In order to disable

Context Switches when an Interrupt or Fault occur, RST bit 2 (See

Section 2.1.2. Status Register (RST)) must be cleared.

Whenever a Context Switch occur, the Task Structures referenced

by the Task Registers (See Section 2.1.5. Task Registers (RBT and RCT))

are loaded or updated by the CPU, depending on what caused that

Context Switch. The operations performed by the CPU when a Context

Switch occur are described below:

• The Task Structure pointed by RBT is loaded whenever a Fault or

Interrupt occur and it is updated whenever a LTSK instruction is

executed.

• The Task Structure pointed by RCT is loaded whenever a LTSK

instruction is executed and it is updated whenever a a Fault or

Interrupt occur.

Context Switching is an important part of the Operating System

Task Management mechanism. It is strongly recommended, when

implementing Task Management mechanism for an Operating System

based on LEG Architecture, the full understanding of the Section 8. Multi-

Tasking, all its sub-sections and all the recommended sections or sub-

sections that may be referenced.

66

9. Timers

LEG Architecture specifies eight (8) internal CPU Timers that can be

used for time elapsing. These Timers can only be configured at Privilege

Level 0 (See Section 3.1 Privilege Level 0). Attempts to setup a Timer at

Privilege Level 1 will cause a Privilege Fault (See Section 6.1.12. Privilege

Fault) to occur.

The following sub-sections (Section 9.1. Timer Parameters and

Section 9.2. Timer Configuration) will describe the available timer

parameters and how to setup them.

9.1. Timer Parameters

A Timer is data structure with three (3) elements: Timer ID,

Granularity and Time to Expiration (TTE).

The Timer ID identifies the timer. Valid Timer ID values range from

0 to 7.

Granularity defines the magnitude of the TTE value. It can represent

nanoseconds, microseconds, milliseconds and seconds. Table 9.1

describes the implemented Granularity Flags for each available option.

Granularity Flag Description

0x01 Nanoseconds (ns)

0x02 Microseconds (us)

0x04 Milliseconds (ms)

0x08 Seconds (s)

(Table 9.1. Granularity ID values)

Time to Expiration is the amount of time that will elapse since the

Timer is activated, until it expires and causes a Timer Expiration Interrupt

(See Section 5.2.8. Timer Expiration Interrupt).

67

9.2. Timer Configuration

Timers are configured through a Timer Configuration Interrupt.

Detailed information regarding this topic can be found on Section 5.2.7.

Timer Configuration Interrupt.

If an invalid value of Timer ID or an invalid Granularity Flag is used

while configuring the Timer, a Bad Operation Value Fault will occur (See

Section 6.1.5. Bad Operation Value Fault).

68

VI. Appendixes

Appendix A – Bootloader Example

For the purpose of illustration of how to develop a basic bootloader

on LEG Architecture, it is assumed that there's an external controller that

reads the bootloader binary data from a storage device and loads it into

system memory at the first memory address available that doesn't belong

to a Reserved Memory Region (See Section 2.1.1. Instruction Pointer

Register (RIP) and Section 7.1. Reserved Memory Regions).

Being that granted and assuming that the bootloader binary data

length doesn't exceed 2048 bytes, the following assembly code will load

an Operating System kernel, which size is described by a 32-bit integer

value stored at the address 0x800 on the system device identified as

Storage ID 0, into the system memory address 0x1000 and perform a

JMP (See Section 4.6. JMP) instruction into this address after the

bootloader process completes:

1. .start:

2. cpvl 0x00, rst # Disabled: Interrupts,FH,Tasking,Paging

3. cpvl 0x10000, rgp1 # I/O Read from storage ID 0

4. cpvl 0x800, rgp2 # Start Read at 0x800

5. cpvl 4, rgp3 # Read 4 bytes

6. cpvl 0x1000, rgp4 # Store at memory address 0x1000

7. intr 0x0B # Perform Storage I/O read

8. cpr rpg4, rgp3 # Load kernel size

9. cpvl 0x804, rgp2 # Start read kernel binary at 0x804

10. intr 0x0B # Perform Storage I/O read

11. cpvl 0x01, rcmp # Enable JMP

12. jmp 0x1000 # Start kernel code execution

69

Appendix B – Debugging Techniques

Although LEG Architecture does not specify debugging mechanisms,

there are several techniques that can be used in order to do so.

Breakpoints are possible to be implemented by configuring a User-

Defined Interrupt (See Section 5.3. User-Defined Interrupts). A debugger

can use the instruction that causes this interrupt to occur to replace the

instruction where the breakpoint is required and the interrupt handler

may be used to perform the analysis. After the analysis is completed, the

interrupt handler shall replace the interrupt instruction with the original

instruction and correctly adjust RIP (See Section 2.1.1. Instruction

Pointer Register) address in order to point to it.

More complex and robust mechanisms may be implemented for

Multi-Tasking Operating Systems by implementing one or more system

calls for debugging purposes.

70

Appendix C – Multi-Tasking Process Scheduler

The implementation of a simple Multi-Tasking Process Scheduler

may be accomplished by using the Multi-Tasking mechanisms available on

LEG Architecture (See Section 8. Multi-Tasking) along with properly

configured Timers (See Section 9. Timers).

By configuring a Timer each time a LTSK instruction is used (See

Section 4.14. LTSK), it is possible to grant the amount of CPU time that is

allocated to a specific task. A process scheduler in a round-robin fashion,

may perform the following steps:

• Load RCT with the address of the next Task Structure.

• Setup a Timer with the amount of time the task should be

running.

• Perform a LTSK instruction.

• When the Timer expires, a Timer Expiration Interrupt is caught.

• The interrupt handler informs the Process Scheduler.

• Repeat all the steps above.

This simplified algorithm allocates the same amount of processing

time to every existing task.

For more information regarding this topic, please read the

recommended sections referenced above and also the Section 2.1.5. Task

Registers (RBT and RCT) and Section 5. Interrupts.

71

Appendix D – Interrupts and Context Switching

Interrupt Handling must be designed properly in order to efficiently

work on a Multi-Tasking Operating System, avoiding multiple context

switches on the same task context.

To avoid interrupt occurrence inside an interrupt handler, it is

required the interrupt handler code to disable interrupt handling at its

very first instruction, by clearing the RST bit 0.

Also, if a fault occur during the interrupt handler execution, one

should avoid a new context switch to RBT Task Structure when the

current context is already the Base Task Context. It is recommended that

the Base Task have the context switches disabled during the interrupt

handler execution by clearing the RST bit 2.

By implementing this approach, it is granted that interrupts only

occur on User-Space tasks, causing the desired context switch to RBT

Task Structure. This approach also grants that if a fault occur inside an

interrupt handler routine, a context switch won't occur.

Note that the context switching should be enabled by setting the

RST bit 2 before the LTSK instruction is called, as this instruction will take

no effect if task registers are disabled.

For a better understanding of this approach, it is strongly

recommended the complete read and understanding of Section 2.1.2.

Status Register (RST), Section 2.1.5. Task Registers (RBT and RCT),

Section 4.1.14. LTSK, Section 5. Interrupts and Section 8. Multi-tasking.

72

