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I. Abstract

This  technical  document  is  a  computer  science  specification 

describing a computer architecture named LEG Architecture.

The LEG Architecture is a RISC architecture that specifies both 32-

bit and 64-bit addressing system implementations.

It supports advanced memory management such as Paging, an IEEE 

754 compliant  FPU and an efficient and clean design to support multi-

tasking operating systems.

The  simplicity  of  the  LEG  Architecture makes  it  possible  to  be 

implemented on a Field-Programmable Gate Array (FPGA), which turns 

the implemented CPU suitable for low power consumption applications.
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II. Authors
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Author's Name: Pedro A. Hortas
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The author was also the creator of LEG Architecture.
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III. Conventions

Although  the  concepts  found  in  this  document  are  mostly  self-

contained and are described as clearly as possible,  it  is  recommended 

that the reader has a some basic understating on Computer Architecture 

domain.

This  document also uses some notations for  numbering,  such as 

binary  and  hexadecimal,  that  the  reader  must  be comfortable  with  in 

order to make this document easier to read.

Sometimes, abbreviations and/or acronyms are used. The following 

list  covers  most  part  of  these  abbreviations  and  acronyms  with  their 

respective meaning:

• ALU – Arithmetic Logic Unit

• ASCII – American Standard Code for Information Interchange

• CPU – Central Process Unit

• FPU – Floating-Point Unit

• ID – Identifier

• IEEE – Institute of Electrical and Electronics Engineers

• I/O – Input / Output

• LEG – LEG Architecture (either 32-bit and 64-bit)

• LEG32 – LEG Architecture with 32-bit addressing system

• LEG64 – LEG Architecture with 64-bit addressing system

• LSB – Least Significant Bit

• MSB – Most Significant Bit

• Opcode – Operation Code

• OS – Operating System

• RISC – Reduced Instruction Set Computing
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V. Specifications

1. Architecture Overview

The  LEG Architecture is  a  RISC architecture.  It  specifies  twenty-

eight (28) registers, being twelve (12) defined as Control Registers (See 

Section 2.1. Control Registers), eight (8) General Purpose Registers (See 

Section 2.2.  General  Purpose  Registers),  four  (4)  Arithmetic  Logic 

Registers (See  Section  2.3.  Arithmetic  Logic  Registers)  and  four  (4) 

Floating-Point  Registers (See  Section 2.4.  Floating-Point  Registers).  It 

also  implements  simple  Paging (See  Section  7.4.  Paging)  and  Multi-

Tasking (See Section 8. Multi-Tasking) mechanisms.

LEG Architecture specifies both 32-bit and 64-bit implementations: 

The LEG32 Architecture (32-bit) and LEG64 Architecture (64-bit).

1.1. Notations

This section describe the notations used along this document.

Numbers in this document may be represented either in decimal, 

hexadecimal or binary format. The notations used for these numbers are:

• Decimal numbers are in the format 00

• Hexadecimal numbers are in the format 0x00

• Binary numbers are in the format 0b00

1.2. Endianess

Endianess, also known as Byte Order, is the ordering by which the 

CPU represents,  in  the  system memory,  an  addressable  value  that  is 

greater than 1 byte. There are two types of Endianess: Little Endian and 

Big Endian.

8



Little  Endian systems  represent  a  greater  than  1  byte  value  in 

system memory from the least significant byte to the most significant.

Big Endian systems represent a greater than 1 byte value in system 

memory from the most significant byte to the least significant.

LEG Architecture is Big Endian.

1.3. Floating-Point Numbers

LEG  Architecture Floating-Point numbers  are  represented  as 

specified by the IEEE 754 standard. Please refer to this standard for more 

information regarding this topic.

1.4. Exceptions

Exceptions in LEG Architecture are considered a state that cannot be 

handled alone by the CPU, and therefore are considered a fault state. This 

means that there's no distinguishable state that separate an  Exception 

from a Fault, being any Exception in LEG Architecture treated as a Fault.

Faults can occur at any moment, when the CPU is unable to handle 

the  current  machine  state.  These  states  may  be  caused  by  software 

requesting operations that the CPU cannot perform, or by hardware such 

as the detection of a failed hardware component either by the CPU or by 

an external controller, causing a Machine Check Fault.

For more information regarding Fault States, please refer to Section 

6. Faults and Section 6.1. Fault States.

1.5. External Hardware Controllers

LEG Architecture does not specify how the CPU should interact with 

9



External Hardware Controllers. This should be implementation specific of 

the CPU.

The CPU implementation is responsible to correctly interpret what is 

specified  in  this  document  and  implement  their  own  communication 

mechanisms between the CPU and the External Hardware Controllers.

Refer  to  Section  1.6.  Expansibility  and  Extensions for  more 

information regarding this topic.

1.6. Expansibility and Extensions

There  are  no  limitations  on  this  specification  that  inhibits  the 

expansibility of the LEG Architecture as long as the CPU implementation is 

in accordance with the specifications described in this document.

It  is  allowed  to  implement  new  Interrupts (See  Section  5. 

Interrupts) for expansibility purposes as long as their IDs fall in the range 

of the last ten (10) Architecture-Specific Interrupts (from ID 21 to ID 31) 

(See  Section  5.2.  Architecture-Specific  Interrupts).  These  IDs  are 

specially reserved for that purpose and will never be used in future  LEG 

Architecture specifications.
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2. Registers

There are twenty-eight (28) registers available in LEG Architecture 

divided as twelve (12) Control Registers (RIP, RST, RFF, RFA, RBT, RCT, 

RPA,  RRA,  RSA,  RCMP,  RLGIC and  RARTH),  eight (8)  General  Purpose 

Registers (RGP1, RGP2, RGP3, RGP4, RGP5, RGP6, RGP7 and RGP8), four 

(4) Arithmetic Logic Registers (RAL1, RAL2, RAL3 and RAL4) and four (4) 

Floating Point Registers (RFP1,  RFP2,  RFP3 and  RFP4). All register sizes 

are  32-bit  long  for  LEG32  Architecture and  64-bit  long  for  LEG64 

Architecture.

Control  Registers are  responsible  for  CPU,  instruction  and  code 

execution flow control.  They provide ways to configure parameters  for 

memory and task management, instruction behavior modification, etc.

General  Purpose Registers,  as  the name states,  are registers  for 

general  purpose  operations  that  may  be  used  for  memory  handling, 

arithmetic and logic operations.

Arithmetic Logic Registers are optimized registers for arithmetic and 

logic operations. Despite the fact that those operations may be performed 

with  General  Purpose Registers,  it’s  strongly  recommended the use of 

Arithmetic Logic Registers for this purpose as they are optimized for such 

operations.

Floating-Point  Registers are  reserved  for  operations  that  involve 

floating-point  numbers.  It  is  important  to  note  that  floating-point 

operations shall never be performed through any other register but the 

Floating-Point Registers, as undefined behavior may occur.

2.1. Control Registers

The  Control Registers control the CPU behavior. There are twelve 

(12)  Control  Registers that  can  be  configured  by  operating  system 

processes running at  Privilege Level 0 (see  Section 3. Privilege Levels). 
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Other processes running at a different Privilege Level may only read the 

Control Registers and are unable to modify them directly, except for RSA, 

RCMP,  RARTH and  RLGIC that  can  still  be  modified  by  code  being 

executed  at  any  Privilege  Level.  The  specifications  for  each  Control 

Register are defined in the following sub-sections (from  Section 2.1.1. 

Instruction  Pointer  Register through  Section  2.1.11.  Arithmetic 

Register).

2.1.1. Instruction Pointer Register (RIP)

The  Instruction Pointer Register (RIP) controls the code execution 

flow. It points directly to a memory reference containing valid opcodes, 

performing their respective operations.

When  Paging is  enabled  (see  Section  7.2.  Paging)  the  Logical 

Address referenced by  RIP is first translated to the respective  Physical 

Address. Pages containing code must have the Executable Permission flag 

enabled or a Page Permission Fault (see Section 6.1.10. Page Permission 

Fault) will occur.

RIP cannot be directly modified by processes running at  Privilege 

Level  1 nor  Privilege  Level  0 (see  Section  3.  Privilege  Levels).  Any 

operation requesting modifications to RIP will cause an Invalid Instruction 

Fault  to  occur  (see  Section  6.1.7.  Illegal  Instruction  Fault).  Code 

execution flow may be modified  through CALL, RET and JMP Instructions 

(see Section 4.6. JMP,  Section 4.7. CALL and Section 4.8. RET).

After CPU initialization, RIP will point to the first address in system 

memory that is not specified as a Reserved Memory Region (See Section 

7.1. Reserved Memory Regions).

2.1.2. Status Register (RST)

The Status Register (RST) provides a set of configurable bit flags for 

CPU control and configuration. There are N possible configuration flags for 
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RST, being N equal to 32 on LEG32 Architecture or equal to 64 on LEG64 

Architecture,  but  only  5  are  currently  implemented,  being  the  others 

reserved for future specifications and shall not be used as a Bad Register 

Value Fault may occur (See Section 6.1.4. Bad Register Value Fault).

Table  2.1 describes  the  currently  implemented  flags  for  RST 

register.

RST bit Description Status Section

0 Enable/Disable Interrupts Set to enable 5. Interrupts

1 Enable/Disable Fault Handling Set to enable 6. Faults

2 Enable/Disable Task Registers Set to enable 8. Multi-Tasking

3 Privilege Level Configuration Set to Privilege Level 1 3. Privilege Levels

4 Enable/Disable Paging Set to enable 7.4. Paging

(Table 2.1. Status Register Description)

Detailed  information  on  flags  0  to  4  can  be  found  on  the 

corresponding indicated sections.

2.1.3. Fault Flags Register (RFF)

The  Fault Flags Register (RFF) indicates, through bit flags, which 

Faults occurred.  Whenever  a  Fault occur  (See  Section  6.  Faults),  the 

corresponding bit for that fault is set in this register. If  Fault Handling 

(See Section 6.2. Fault Handling) is enabled, the routine pointed by RFA 

(See  Section 2.1.4. Fault-Handler Address Register) is executed and if 

Task Registers are enabled (See Section 2.1.6. Current Task Register and 

Section  9.  Multi-Tasking)  the  Current  Task  Context is  saved  to  the 

address pointed by  RCT and the  Base Task Context is loaded from RBT 

address.

Table  2.2 describes  the  Fault bit  flags  currently  defined  for  RFF 

register.
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RFF bit Fault Section

0 Machine Check 6.1.1. Machine Check Fault

1 Bad Memory Reference 6.1.2. Bad Memory Referenced Fault

2 Bad Register Reference 6.1.3. Bad Register Reference Fault

3 Bad Register Value 6.1.4. Bad Register Value Fault

4 Bad Operation Value 6.1.5. Bad Operation Value Fault

5 Illegal Interrupt 6.1.6. Illegal Interrupt Fault

6 Illegal Instruction 6.1.7. Illegal Instruction

7 Floating Point Unit 6.1.8. Floating Point Unit Fault

8 Arithmetic Logic Unit 6.1.9. Arithmetic Logic Unit Fault

9 Page Permission 6.1.10. Page Permission Fault

10 Page 6.1.11. Page Fault

11 Privilege 6.1.12. Privilege Fault

12 Input/Output Operation 6.1.13. Input/Output Operation Fault

13 Interrupt 6.1.14. Interrupt Fault

24-31 Interrupt ID 6.1.14. Interrupt Fault

(Table 2.2. Fault Flags Register Description)

2.1.4. Fault-Handler Address Register (RFA)

Fault-Handler Address Register (RFA) must be configured to hold 

the address for an operating system Fault Handler routine when RST bit 1 

is set (See Section 2.1.2. Status Register (RST)). In order to enable Fault 

Handling (See Section 6.2. Fault Handling), the bit 1 of RST must be set 

to  0  and  a  valid  Physical  Address or,  if  Paging is  enabled,  a  Logical 

Address  (See  Section  7.3.  Physical  Address  Space and  Section  7.4. 

Logical Address Space) must be set as the value of RFA.

Whenever a  Fault occurs and  RST bit  2 is  set, the  Current Task 

Context is automatically saved by the CPU to the address pointed by RCT 
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(See  Section 2.1.5.2. Current Task Register (RCT)) and the  Base Task 

Context is  loaded from  RBT (See  Section 2.1.5.1.  Base Task Register  

(RBT)). See Section 8. Multi-Tasking for more information regarding this 

topic.

The operating system routine responsible for  Fault Handling may 

identify which Faults occurred through RFF status.

2.1.5. Task Registers (RBT and RCT)

Task Registers aid the control of  Task Contexts (See  Section 8.3. 

Context Switching). A  Task Context may be defined as the state of the 

Registers of a given task or process. The Task Context type is defined by 

a  Task  Structure (See  Section  8.1.  Task  Structure).  For  detailed 

information regarding this topic, refer to Section 8. Multi-Tasking.

Two Task Registers are available for all LEG Architectures:  Current 

Task Register (RCT) and Base Task Register (RBT) (See Section 2.1.5.1. 

Base Task Register (RBT) and  Section 2.1.5.2.  Current  Task Register 

(RCT)).

The  RBT shall only be used by tasks running at  Privilege Level 0 

(see Section 3.1 Privilege Level 0), such as the Operating System Kernel 

and it is specially designed for that purpose. The Task Context saved at 

the memory address pointed by RBT is loaded every time an Interrupt or 

a Fault occur and before calling any User or Architecture-specific Interrupt 

Handling Routine or  User-defined Fault Handling  Routine.  The  Task 

Context loaded  under  this  circumstances  will  only  update  the  Control 

Registers,  except  RIP,  RFF  and  RCT.  General  Purpose  Registers, 

Arithmetic  Logic  Registers and  Floating  Point  Registers saved  on  RBT 

location  are  ignored  but  may  or  may  not  be  modified  by  Interrupt 

Handling  Routines and  Fault  Handling  Routines (See  Section  5. 

Interrupts,  Section 6. Faults,  Section 2.1.5.1 Base Task Register (RBT) 

and Section 2.1.5.2. Current Task Register (RCT)). The Task Context is 

saved to  RBT location every time a  LTSK instruction is  executed (See 

Section 4.14. LTSK).
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The  RCT shall  only  point  to  Task Structures running at  Privilege 

Level 1 (see  Section 3.2 Privilege Level 1), such as Operating System 

User-Space tasks or processes. The Task Context is saved to RCT memory 

address location every time an Interrupt or Fault occur and before calling 

any  User or  Architecture-specific Interrupt  Handling  Routine or  User-

defined Fault Handling Routine. All  Registers states are saved. After this 

operation is performed, RBT Task Context is loaded. The Task Context is 

loaded from RCT every time a LTSK instruction is executed (See Section 

4.14.  LTSK).  Before  loading  RCT  Task  Context,  RBT  Task  Context is 

saved.

2.1.5.1 Base Task Register (RBT)

The Base Task Register (RBT) is only active when the bit 2 of RST is 

set to 1. If active, it must point to a valid Physical or Logical Address (See 

Section 7.2. Physical  Address Space and  Section 7.3. Logical  Address 

Space) capable of storing a continuous memory region to hold data with 

length  of  116 bytes  for  LEG32 Architecture and  228 bytes  for  LEG64 

Architecture (See Section 8.1. Task Structure). The CPU uses this register 

to load the Base Task Context of the Operating System kernel task when 

an  Interrupt or  Fault occur (See  Section 5.  Interrupts  and Section 6. 

Faults).

Only the  Control  Registers,  except  RIP, RFF and RCT,  are loaded 

from  the  Task  Structure pointed  by  RBT address.  General  Purpose 

Registers, Arithmetic Logic Registers and Floating Point Registers may or 

may  not  be  modified  during  the  Interrupt or  Fault occurrence.  User-

defined Interrupt Handlers do not change non-Control  Registers unless 

the  handler  routine  does  so.  For  detailed  information  about  this  topic 

please refer to Section 5. Interrupts and Section 6. Faults.

Whenever the  Operating System needs to modify  RBT address for 

Task Structure relocation, it is recommended to disable  Interrupts and 

Fault Handling during the routine responsible for this modification.
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The  Base  Task  Context is  saved  at  RBT address  when  a  LTSK 

instruction (See Section 4.14. LTSK) is executed to load CTR (See Section 

2.1.6 Current Task Register (RCT)).

RBT shall always point to a Task Structure representing a Privilege 

Level 0 task or a Machine Check Fault will occur when a Context Switch is 

performed.  Please  refer  to  Section  3.  Privilege  Levels,  Section  6.1.1. 

Machine  Check  Fault and  Section  8.3.  Context  Switching for  more 

information regarding this topic.

2.1.5.2 Current Task Register (RCT)

The  Current Task Register (RCT) is only active when the bit 2 of 

RST is  set  to 1. If  active,  it  must point  to a valid  Physical or  Logical 

Address (See  Section  7.3.  Physical  Address  Space and  Section  7.4. 

Logical Address Space) capable of storing a continuous memory region to 

hold data with length of 116 bytes for LEG32 Architecture and 228 bytes 

for LEG64 Architecture (See Section 8.1. Task Structure). The CPU uses 

this register to save the Current Task Context of the current running task 

when an Interrupt or Fault occur (See Section 5. Interrupts and Section 

6. Faults).

There is no way to force the CPU to save the current Task Context 

through an instruction or any method other than an  Interrupt or  Fault 

occurrence.

Saved Task Context may only be loaded by operating system tasks 

running at Privilege Level 0 (See Section 3. Privilege Level) through the 

instruction  LTSK (See  Section 4.14. LTSK). This instruction also causes 

the Base Task Context to be saved to RBT address.

2.1.6. Paging Address Register (RPA)

The Paging Address Register (RPA) is only active when the bit 4 of 

RST is set to 1. If active, it must point to a valid  Physical Address (See 
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Section  7.3.  Physical  Address  Space)  capable  of  storing  a  continuous 

memory  region  to  hold  data  with  length  of  24  bytes  for  LEG32 

Architecture and  48  bytes  for  LEG64  Architecture.  The  CPU uses  this 

register to load a Page Structure in order to perform Address Translations 

(See Section 7.4.2. Address Translation).

It is imperative that this register points to a Physical Address since 

there’s no way for the CPU to translate a  Logical Address (See  Section 

7.3. Logical Address Space) before loading a Page Structure.

For more information regarding Paging, please refer to Section 7.4. 

Paging.

2.1.7. Return Address Register (RRA)

The  Return  Address  Register (RRA)  shall  point  to  a  memory 

reference  capable  to  grow  as  it  was  a  Stack  Address  Register  (See 

Section  2.1.8.  Stack  Address  Register  (RSA)).  It  stores  the  Return 

Addresses when a CALL (See Section 4.7. CALL) instruction is performed. 

The  RET (See  Section 4.8.  RET) instruction reads the last  4  bytes on 

LEG32 Architectures or the last 8 bytes on LEG64 Architectures that were 

written by CALL in order to properly set the RIP.

Whenever a  CALL instruction occurs, the next instruction address 

after  CALL is  stored  at  the  memory  reference  pointed  by  RRA.  RRA 

content is then incremented by the value of 4 on LEG32 Architecture or by 

the value of 8 on LEG64 Architecture.

Whenever a  RET instruction occurs, the  RRA value is decremented 

by 4 on LEG32 Architecture or by 8 on LEG64 Architecture and the value 

stored at that memory reference is loaded onto RIP.

If Paging is enabled (See Section 7.4. Paging), it’s imperative that 

the  Page Permission (See Section 7.4.3. Page Permissions) of the  Page 

mapping the RRA memory region be set to Read-Only. Failing to do so will 

cause  a  Page  Permission  Fault (See  Section  6.1.10.  Page  Permission 
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Fault) to occur.

2.1.8. Stack Address Register (RSA)

The  Stack Address Register (RSA) is  reserved for  Stack Memory 

Management. If  Paging (See  Section  7.4.  Paging)  is  enabled,  it’s 

recommended  that  the  Page  Permission (See  Section  7.4.3.  Page 

Permissions) of the Page mapping the stack memory region shall be set 

to Read-Only.

There  are  no  implemented  instructions  that  abstract  the  Stack 

Memory  Management in  LEG  Architecture.  The  RSA value  must  be 

handled through instructions such as CPVL, CPVR, ARTH, LGIC, etc. (See 

Section 4. Instruction Set).

The growth direction of stack in LEG Architecture is arbitrary.

2.1.9. Comparator Register (RCMP)

Comparator Register (RCMP) is  a bit  flag register responsible for 

behavior modification of the CMP instruction (See Section 4.5. CMP). This 

means  that  CMP instruction  behaves  differently,  depending  on  the 

configuration set at  RCMP.  Note that  RCMP must be configured before 

CMP instruction is performed.

RCMP instructs CMP on how to compare the values. The result of the 

comparison is stored at bit 0 of RCMP after CMP is performed.

Table 2.3 describes permitted flags for RCMP.

More  than  one  flag  may  be  set  to  RCMP in  order  to  perform 

comparisons such as Greater Than or Equal, or Lesser Than or Equal, by 

respectively setting the bits 4 and 2 and bits 4 and 3.
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RCMP bit Description Obs.

0 Result of CMP instruction 0 is False, 1 is True

1 Not Equal -

2 Greater Than -

3 Lesser Than -

4 Equal -

(Table 2.3. Comparator Register Description)

2.1.10. Logic Register (RLGIC)

Logic Register (RLGIC) is a bit flag register responsible for behavior 

modification of the LGIC instruction (See Section 4.10. LGIC). This means 

that LGIC instruction behaves differently, depending on the configuration 

set at RLGIC. Note that RLGIC must be configured before LGIC instruction 

is performed.

RLGIC instructs  LGIC on which operation will be performed on the 

values. The result of the operation is stored at the target register LGIC 

instruction.

Table 2.4 describes the permitted flags for RLGIC.

More  than  one  flag  may  be  set  to  RCMP in  order  to  perform 

operations such as XNOR, NAND or NOR, by respectively setting the bits 1 

and 0, 2 and 0 and bits 3 and 0.

RLGIC bits  ranging  from  16  to  18  specify  the  number  of  LSBs 

affected on  the LGIC (See Section 4.10. LGIC) instruction operands. Only 

RAL register operands are sensitive to these flags. Note that bit 18 is only 

implemented on  LEG64 Architecture. If set on  LEG32 Architecture it will 

cause  a  Bad  Register  Value  Fault to  occur  (See  Section  6.1.4.  Bad 

Register Value Fault). If all bits, ranging from 16 to 18, are cleared, the 

operation is performed including all register bits.
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RLGIC bit Description Obs.

0 NOT operation Requires two (2) operands.

1 XOR operation -

2 AND operation -

3 OR operation -

4 Shift Left operation -

5 Shift Right operation -

6 Rotate Left operation -

7 Rotate Right operation -

16 8-bit Operation (LSB) Only evaluated on RAL registers

17 16-bit Operation (LSB) Only evaluated on RAL registers

18 32-bit Operation (LSB)*
Only evaluated on RAL registers

*LEG64 Only

(Table 2.4. Logic Register Description)

2.1.11. Arithmetic Register (RARTH)

Arithmetic  Register (RARTH)  is  a bit  flag register  responsible  for 

behavior modification of the  ARTH instruction (See  Section 4.9. ARTH). 

This means that  ARTH instruction behaves differently, depending on the 

configuration set at RARTH. Note that RARTH must be configured before 

ARTH instruction is performed.

RARTH instructs ARTH on which operation will be performed on the 

values. The result of the operation is stored at the target register of the 

ARTH instruction.

Table 2.5 describes the permitted flags for RARTH.

Operations involving signed values must have the bit 5 flag set at 

RARTH.
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RCMP bit Description Obs.

0 Multiplication -

1 Division -

2 Subtraction -

3 Addition -

4 Modulus -

5 Signed Operation Set  to perform signed operations

6 Overflow Indicator Set when Overflow occur

7 Underflow Indicator Set when Underflow occur

8 Extended ALU Operand (RAL1) -

9 Extended ALU Operand (RAL2) -

10 Extended ALU Operand (RAL3) -

11 Extended ALU Operand (RAL4) -

12 Extended FPU Operand (RFP1) -

13 Extended FPU Operand (RFP2) -

14 Extended FPU Operand (RFP3) -

15 Extended FPU Operand (RFP4) -

16 8-bit Operation (LSB) Only evaluated on RAL registers

17 16-bit Operation (LSB) Only evaluated on RAL registers

18 32-bit Operation (LSB)*
Only evaluated on RAL registers

*LEG64 only

(Table 2.5. Arithmetic Register Description)

RARTH bits 6 and 7 are set when an arithmetic operation causes the 

target register to respectively overflow or underflow its value.

The Overflow behavior is defined to reset all the bits of the register, 

where  the  overflow  occurred,  when  an  additional  MSB,  beyond  the 

register size, was required during the arithmetic operation to represent 

the result.  This  means,  assuming that  RARTH bits  from 16 to  18 are 
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cleared, that the operation 0xFFFFFFFF + 0x03 will  result in the value 

0x02  (LEG32)  with  the  RARTH bit  6  set  indicating  that  an  Overflow 

occurred.

The Underflow behavior is defined to set all the bits of the register, 

where the underflow occurred,  to  one when all  its  bits  were set  to 0 

during the arithmetic operation. This means, assuming that  RARTH bits 

from 16 to 18 are cleared, that the operation 0x00000000 – 0x03 will 

result  in  the  value  0xFFFFFFFD  (LEG32)  with  the  RARTH bit  7  set 

indicating that an Underflow occurred.

Extended ALU Operand (RARTH bits  8 to  11) and  Extended FPU 

Operand (RARTH bits 12 to 15) flags activate the corresponding register 

to  extend  the  target  operand,  being  the  target  operand  the  least 

significant part and the extended operand the most significant part. This 

enables the possibility to perform 32-bit operations with 64-bit results on 

LEG32 Architecture and 64-bit operations with 128-bit results on LEG64 

Architecture. When one extended operand is active, neither the Overflow 

nor Underflow flag will be set during the arithmetic operation.

RARTH bits  ranging  from 16  to  18  specify  the  number  of  LSBs 

affected on  the ARTH (See Section 4.9. ARTH) instruction operands. Only 

RAL register operands are sensitive to these flags. Note that bit 18 is only 

implemented on  LEG64 Architecture. If set on  LEG32 Architecture it will 

cause  a  Bad  Register  Value  Fault to  occur  (See  Section  6.1.4.  Bad 

Register Value Fault). If all bits, ranging from 16 to 18, are cleared, the 

operation is performed including all register bits.

2.2. General Purpose Registers (RGP1 to RGP8)

There  are  eight  General  Purpose  Registers available  on  LEG 

Architecture: RGP1, RGP2, RGP3, RGP4, RGP5, RGP6, RGP7 and RGP8.

These  registers  permit  the  following  types  of  operations:  Literal 

Assignment,  Memory Handling,  Logic Operations,  Arithmetic Operations 

(excluding Floating Point Operations) and Comparisons.
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Any  General Purpose Register may be used along with any other 

register in a given instruction that permits two registers as arguments.

Although  Logic and  Arithmetic  Operations are permitted between 

General  Purpose  Registers,  it  is  strongly  recommended  the  use  of 

Arithmetic  Logic  Registers for  this  purpose  (See  Section  2.1.13. 

Arithmetic Logic Registers (RAL1 to RAL4)).

2.3. Arithmetic Logic Registers (RAL1 to RAL4)

There  are  four  Arithmetic  Logic  Registers available  on  LEG 

Architecture: RAL1, RAL2, RAL3 and RAL4.

Permitted  operations  for  Arithmetic  Logic  Registers are:  Literal 

Assignment,  Memory Handling,  Logic Operations,  Arithmetic Operations 

(excluding Floating Point Operations) and Comparisons.

These  are  ALU (Arithmetic  Logic  Unit)  registers,  being  highly 

optimized  for  Arithmetic and  Logic  Operations.  It  is  strongly 

recommended  that  Arithmetic and  Logic Operations involving  the 

instructions  ARTH and  LGIC should  be  performed  directly  on  these 

registers, since they are integrated in the ALU unit. Arithmetic and Logic 

Operations are  permitted  on  other  registers,  but  the  CPU  needs  to 

internally copy the values from the non-RAL registers into  RAL registers 

before performing the requested operation. If non-RAL registers are used 

for an Arithmetic or Logic Operation, the CPU will cache the values of two 

RAL registers before copying the values of the non-RAL registers into it. 

After  the operation is  completed, the previous values of the used  RAL 

registers are restored.

Arithmetic and Logic Operations involving Floating Point values are 

required  to  be  performed  with  Floating  Point  Registers (See  Section 

2.1.14. Floating-Point Registers (RFP1 to RFP4)).
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2.4. Floating-Point Registers (RFP1 to RFP4)

There  are  four  Floating-Point  Registers available  on  LEG 

Architecture: RFP1, RFP2, RFP3 and RFP4.

Permitted  operations  for  Floating-Point  Registers are:  Literal 

Assignment, Arithmetic Operations and Comparisons.

These  registers  are  part  of  an  ALU (Arithmetic  Logic  Unit)  sub-

component  called  FPU (Floating-Point  Unit),  being highly optimized for 

Floating-Point Arithmetic and Logic Operations.

Floating-Point Arithmetic Operations are required to be performed in 

the  Floating-Point Registers.  The behavior for  Floating-Point Operations 

performed with non-RFP registers is unspecified.
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3. Privilege Levels

LEG Architecture support two Privilege Levels of operation: Privilege 

Level 0 and Privilege Level 1.

Privilege Level is selected by modifying RST bit 3.

Privilege  Level  0 is  the  highest  privilege  level  available.  Code 

executed  at  this  privilege  level  is  allowed  to  modify  directly  any  CPU 

register, except  RIP. This level is granted for code being executed with 

RST bit 3 unset. See Section 3.1. Privilege Level 0 for more information 

regarding this topic.

Privilege  Level  1 is  the  lowest  privilege  level  available.  Code 

executed at this privilege level is only allowed to directly modify General 

Purpose Registers, Arithmetic Logic Registers, Floating Point Registers and 

the Control Registers RSA, RCMP, RLGIC and RARTH. This level is granted 

for code being executed with  RST bit 3 set. See  Section 3.2. Privilege 

Level 1 for more information regarding this topic.

Privilege Levels are also evaluated by Interrupt Handling Routines. 

Architecture-specific Interrupt Handlers run at Privilege Level 0. Software 

Interrupts that  cause an  Architecture-specific  Interrupt  Handlers to  be 

executed can only be performed by code running at Privilege Level 0 (Eg. 

INTR 0x0A) (See  Section 4.11. INTR).  User-defined Interrupts may set 

the minimum Privilege Level required to invoke the respective handler. For 

more information regarding this topic, refer to Section 5. Interrupts.

3.1. Privilege Level 0

Privilege  Level  0 is  the  highest  privilege  level  available  on  LEG 

Architecture. This privilege level shall be reserved for tasks or processes 

requiring  full  control  of  CPU  Configuration,  Direct  Hardware  Access, 

Memory Management,  Task Management,  Interrupt Handling and Fault 

Handling. Refer to Section 2.1. Control Registers,  Section 5. Interrupts, 
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Section 6. Faults, Section 7. Memory Management and Section 8. Multi-

Tasking for more information regarding these topics.

It is allowed to modify directly all registers for code running at this 

privilege level except RIP that can only be indirectly modified by CALL and 

RET instructions (See Section 4.7. CALL and Section 4.8. RET). There is 

also no restrictions for any instructions referred in Section 4. Instruction 

Set.

It is strongly recommended, when implementing a multi-task, multi-

user operating system based on  LEG Architecture, that only the kernel 

code  should  run  at  this  privilege  level.  User-land  tasks  or  processes 

should always run at  Privilege Level 1 (See  Section 3.2. Privilege Level 

1).

3.2. Privilege Level 1

Privilege  Level  1 is  the  lowest  privilege  level  available  on  LEG 

Architecture. This privilege level shall be reserved for tasks or processes 

that do not require direct  access to hardware resources nor hardware 

management.

Code running at this privilege level cannot modify any of the Control 

Registers directly,  except  for  RSA,  RCMP,  RLGIC and  RARTH.  The  RIP 

register can still be modified indirectly by CALL and RET instructions (See 

Section  4.7.  CALL and  Section  4.8.  RET).  The  instruction  LTSK (See 

Section 4.14. LTSK) is disabled at this level, causing an Illegal Instruction 

Fault (See  Section  6.1.7.  Illegal  Instruction  Fault)  if  its  execution  is 

attempted.

Software  Interrupts are  also  disabled  for  Architecture-specific 

Interrupts.  Software Interrupts targeting User-defined Interrupts may or 

may be enabled, depending on the privilege level set on the  Interrupt 

Vector (See Section 5.1. Interrupt Vector) for that routine. Attempts to 

execute software interrupts reserved or configured to Privilege Level 0 will 

cause a Privilege Fault to occur (See Section 6.1.12. Privilege Fault).
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It is strongly recommended, when implementing multi-task, multi-

user  operating systems based on  LEG Architecture,  that  the  User-land 

tasks or processes run at this privilege level.
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4. Instruction Set

LEG  Architecture implements  fourteen  (14)  instructions:  CPVR, 

CPVL,  CPR,  CPRR,  CMP,  JMP,  CALL,  RET,  ARTH,  LGIC,  INTR,  CEB,  NOP 

and LTSK.

These mnemonics are translated into opcodes by an assembler. The 

opcode structure for  the  combination of  operation and its  operands is 

described in Table 4.1 and Table 4.2.

The Register IDs for each LEG Architecture register are described in 

Table 4.3.

Opcode Instruction ID Operands
Source 

Operand

Target 

Operand

0x000000ZZ Z 0 - -

0x0000YYZZ Z 1 Special Literal Y -

0x00XXYYZZ Z 2 Register Y Register X

0x0000YYZZ 

0xNNNNNNNN
Z 2 Register Y Memory N

0x000000ZZ 

0xNNNNNNNN
Z 1 Memory N -

0x000000ZZ 

0xNNNNNNNN 

0xKKKKKKKK

Z 2
Memory N

Literal N

Memory K

0x00XX00ZZ 

0xNNNNNNNN
Z 2

Memory N

Literal N
Register X

(Table 4.1. Opcode Structure)
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ID Description Type

XX Register Reference ID Operand

YY
Special Literal

Register Reference ID
Operand

ZZ Instruction ID Operation

NN
Literal

Memory Reference
Operand

KK Memory Reference Operand

(Table 4.2. ID descriptions of Table 4.1)

Register ID

RIP 0x00

RST 0x04

RFF 0x08

RFA 0x0C

RBT 0x10

RCT 0x14

RPA 0x18

RRA 0x1C

RSA 0x20

RCMP 0x24

RLGIC 0x28

RARTH 0x2C

RGP1 0x30

RGP2 0x34

RGP3 0x38

RGP4 0x3C

RGP5 0x40
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RGP6 0x44

RGP7 0x48

RGP8 0x4C

RAL1 0x50

RAL2 0x54

RAL3 0x58

RAL4 0x5C

RFP1 0x60

RFP2 0x64

RFP3 0x68

RFP4 0x6C

(Table 4.3. Register ID Reference)

The next  sub-sections (From  Section 4.1.  CPVR to  Section 4.14. 

LTSK) specify the opcodes for each Instruction and describe in detail their 

operations.

4.1. CPVR

Mnemonic: CPVR

Instruction Opcode: 0x00000001

Maximum Operands: 2

Minimum Operands: 2

Source Operand Type: Register

Target Operand Type: Register, Memory Address

Maximum Clock Cycles: To be defined

Description:  Copy  the  register  contents  referred  in  the  source 

operand to the target operand.

Opcodes Example:

CPVR RST, RGP1 # 0x00043001
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CPVR RGP7, RFP1 # 0x00486001

CPVR RGP2, 0xAABBCCDD # 0x00003401 0xAABBCCDD

4.2. CPVL

Mnemonic: CPVL

Instruction Opcode: 0x00000002

Maximum Operands: 2

Minimum Operands: 2

Source Operand Type: Literal

Target Operand Type: Register, Memory Address

Maximum Clock Cycles: To be defined

Description: Copy a literal  value from the source operand to the 

target operand.

Opcode Example:

CPVL 0x12, RAL1 # 0x00500002 0x00000012

CPVL 0xAC, RSA # 0x00200002 0x000000AC

CPVL 0xABCD, 0x11223344 # 0x00000002 0x0000ABCD 0x11223344

4.3. CPR

Mnemonic: CPR

Instruction Opcode: 0x00000003

Maximum Operands: 2

Minimum Operands. 2

Source Operand Type: Register, Memory Address

Target Operand Type: Register, Memory Address

Maximum Clock Cycles: To be defined

Description: Copy the value referenced by the memory address in 

the source operand to the target operand.  If  the source operand is  a 

register, its value is considered the memory address to copy the value 
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from.

Opcode Example:

CPR RSA, RGP1 # 0x00203003

CPR 0x3344, RSA # 0x00200003 0x00003344

CPR 0xAABB, 0xCCDD # 0x00000003 0x0000AABB 0x0000CCDD

4.4. CPRR

Mnemonic: CPRR

Instruction Opcode: 0x00000004

Maximum Operands: 2

Minimum Operands: 2

Source Operand Type: Register

Target Operand Type: Register

Maximum Clock Cycles: To be defined

Description: Copy the register contents referenced by the source 

operand to the memory address location referenced by the value of the 

target operand.

Opcode Example:

CPRR RGP3, RSA # 0x00382004

4.5. CMP

Mnemonic: CMP

Instruction Opcode: 0x00000005

Maximum Operands: 2

Minimum Operands: 2

Source Operand Type: Register

Target Operand Type: Register

Maximum Clock Cycles: To be defined
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Description: Performs the comparison currently selected on  RCMP 

(See  Section 2.1.9. Comparator Register (RCMP)) between the register 

contents  referenced  by  the  source  operand  and  the  register  contents 

referenced by the target operand. The result of the comparison is stored 

at  RCMP bit  0.  Also,  CMP instruction  clears  RCMP bit  0  when  it  is 

executed.

Opcode Example:

CMP RAL2, RGP5 # 0x00544005

4.6. JMP

Mnemonic: JMP

Instruction Opcode: 0x00000006

Maximum Operands: 1

Minimum Operands: 1

Source Operand Type: Register, Memory Address

Maximum Clock Cycles: To be defined

Description:  Set  the  RIP (See  Section 2.1.1.  Instruction Pointer 

Register (RIP)) register value to the memory address referenced by the 

source operand. If the source operand is a register, its value is considered 

the memory address to be set to RIP. This instruction has no effect is the 

RCMP bit 0 is set to 0 (See Section 2.1.9. Comparator Register (RCMP)).

Opcode Example:

JMP 0x11EEFF # 0x00000006 0x0011EEFF

JMP RGP8 # 0x00004C06

4.7. CALL

Mnemonic: CALL
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Instruction Opcode: 0x00000007

Maximum Operands: 1

Minimum Operands: 1

Source Operand Type: Register, Memory Address

Maximum Clock Cycles: To be defined

Description:  Set  the  RIP (See  Section 2.1.1.  Instruction Pointer 

Register (RIP)) register value to the memory address referenced by the 

source operand. The memory address containing the instruction next to 

CALL is pushed into the address referenced by  RRA (See  Section 2.1.7. 

Return Address Register (RRA)).

Opcode Example:

CALL 0xAACCBBDD # 0x00000007 0xAACCBBDD

CALL RGP4 # 0x00003C07

4.8. RET

Mnemonic: RET

Instruction Opcode: 0x00000008

Maximum Operands: 0

Maximum Clock Cycles: To be defined

Description:  Set  the  RIP (See  Section 2.1.1.  Instruction Pointer 

Register (RIP)) register value to the memory address referenced by the 

last  pushed  RRA address. This address is then popped from  RRA.  See 

Section 2.1.7. Return Address Register (RRA).

Opcode Example:

RET # 0x00000008

35



4.9. ARTH

Mnemonic: ARTH

Instruction Opcode: 0x00000009

Maximum Operands: 2

Minimum Operands: 2

Source Operand Type: Register

Target Operand Type: Register

Maximum Clock Cycles: To be defined

Description: Performs the arithmetic operation selected on  RARTH 

(See  Section 2.1.11. Arithmetic Register (RARTH)) between the source 

and target operands. The result of the operation is stored at the target 

operand.  ARTH instruction  clears  the  RARTH bits  6  and  7  when  it  is 

executed.

Opcode Example:

ARTH RAL1, RAL3 # 0x00505809

ARTH RAL4, RAL2 # 0x005C5409

4.10. LGIC

Mnemonic: LGIC

Instruction Opcode: 0x0000000A

Maximum Operands: 2

Minimum Operands: 2

Source Operand Type: Register

Target Operand Type: Register

Maximum Clock Cycles: To be defined

Description: Performs the logic operation selected on  RLGIC (See 

Section 2.1.10. Logic Register (RLGIC)) between the source and target 

operands. The result of the operation is stored at the target operand.

Opcode Example:
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LGIC RAL3, RAL2 # 0x0058540A

LGIC RAL4, RAL1 # 0x005C500A

4.1.11. INTR

Mnemonic: INTR

Instruction Opcode: 0x0000000B

Maximum Operands: 1

Minimum Operands: 1

Source Operand Type: Literal

Maximum Clock Cycles: To be defined

Description:  Causes  a  Software  Interrupt.  The  source  operand 

indicates the Interrupt ID. See Section 5. Interrupts for more information 

regarding this topic.

Opcode Example:

INTR 0x0A # 0x00000A0B

INTR 0x01 # 0x0000010B

4.1.12. CEB

Mnemonic: CEB

Instruction Opcode: 0x0000000C

Maximum Operands: 2

Minimum Operands: 2

Source Operand Type: Register, Memory Address

Target Operand Type: Register, Memory Address

Maximum Clock Cycles: To be defined

Description: Performs a parallel processing of the instruction block 

starting at the memory address referenced by the source operand and 

ending at the memory address referenced by the target operand. If the 
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source and/or target operand is  a  register,  its  value is  considered the 

memory address to start/end from/to.

Opcode Example:

CEB RGP1, RGP2 # 0x0030340C

CEB 0x4567, RGP3 # 0x0000380C 0x00004567

CEB 0xAA00, 0xAAFF # 0x0000000C 0x0000AA00 0x0000AAFF

Notes:  An  Illegal  Instruction  Fault (See  Section  6.1.6.  Illegal 

Instruction Fault) will occur if the target operand value is lesser than or 

equal to the value of the source operand, or if the specified range isn't 

aligned to 32-bits.

4.1.13. NOP

Mnemonic: NOP

Instruction Opcode: 0x0000000D

Maximum Operands: 0

Maximum Clock Cycles: To be defined

Description: Increments the RIP value by 4.

Opcode Example:

NOP # 0x0000000D

4.1.14. LTSK

Mnemonic: LTSK

Instruction Opcode: 0x0000000E

Maximum Operands: 0

Maximum Clock Cycles: To be defined

Description: Load the  Task Context from the  Task Structure (See 

38



Section 8.1. Task Structure) from the memory address referenced by the 

register  RCT and causes the  Current Task Context to be saved at the 

memory address referenced by the register RBT. See Section 2.1.5. Task 

Registers (RBT and RCT) for more information regarding this topic.

Opcode Example:

LTSK # 0x0000000E

Notes:  This  is  instruction may only  be performed by code being 

executed at the Privilege Level 0 (See Section 3.1. Privilege Level 0) or a 

Privilege  Fault (See  Section  6.1.12.  Privilege  Fault)  will  occur.  This 

instruction has no effect if RST bit 2 is cleared (See Section 2.1.2. Status 

Register (RST)).
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5. Interrupts

Interrupts are asynchronous signals that indicate the CPU needs to 

handle data at some location in the system. Interrupts may be caused by 

hardware  or  by software,  being  the ones  caused  by  hardware named 

Hardware Interrupts and the ones caused by software named  Software 

Interrupts.

Software  Interrupts are  caused  by  the  INTR instruction  (See 

Section 4.1.11. INTR) and are not affected by the RST bit 0 status (See 

Section  2.1.2.  Status  Register  (RST)).  INTR instruction  causes  an 

immediate  context  switch  to  an  Interrupt  Handler (See  Section  5.4. 

Interrupt Handling).  Task Structures (See  Section 8.1. Task Structure) 

pointed by  Task Registers (See  Section 2.5.  Task Registers (RBT and 

RCT)) will be updated and loaded depending on whether the RST bit 2 is 

set  or  cleared.  If  it  is  set,  the  Task Structure pointed by  RCT will  be 

updated with the current CPU context and the Task Structure pointed by 

RBT will  be loaded as the current CPU context.  The  RIP (See  Section 

2.1.1. Instruction Pointer Register (RIP)) address will still point to the 

INTR instruction  address  until  all  the  requirements  needed  for  the 

execution of such interrupt are verified and granted. This grants that any 

Fault (See Section 6. Faults) occurring during the validation process will 

correctly identify the instruction that caused it.

Hardware  Interrupts are  caused  by  hardware  devices,  indicating 

that they need the attention of the CPU to handle data. As it happens with 

Software Interrupts,  Hardware Interrupts also cause a context switch to 

an  Interrupt Handler that may be or may not be  Trappable.  When an 

Hardware  Interrupt occurs,  it  does  not  cause  the  cancellation  of  the 

current  instruction  being  executed.  After  the  current  instruction  is 

completed, the interrupt is triggered.

Trappable Interrupts  are  interrupts  that  does  not  ignore  the 

Interrupt Vector (See  Section 5.1. Interrupt Vector) entry for their ID. 

This  means  that  the  Interrupt  Handler may  be  customized  by  the 

Operating System. Note that the new configured Interrupt Handler for any 

given  Architecture-specific  Interrupt does  not  override  any  possible 
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internal CPU handling routines implemented for that interrupt. The new 

Interrupt Handler is always executed after this CPU handling routine, if 

any is internally implemented for that given interrupt.

An Interrupt Handler is a procedure that may be internally executed 

by the CPU (Architecture-specific Interrupts), or may be a user-defined 

procedure which the starting address of the code may be configured in 

the Interrupt Vector (User-defined Interrupts). See Section 5.1. Interrupt 

Vector,  Section 5.2. Architecture-specific Interrupts,  Section 5.3. User-

defined Interrupts and Section 5.4. Interrupt Handling.

5.1. Interrupt Vector

The  Interrupt  Vector is  a  memory  structure  that  allows  the 

operating system to configure Software Interrupt Handlers. The structure 

of the Interrupt Vector is composed by 127 elements of two 32-bit fields 

for LEG32 Architecture or one 64-bit field and one 32-bit field for LEG64 

Architecture. The first field is a bit flag field and it is described in Table 

5.1. The second field is the memory address that points to the start of the 

handler code. The index of each element identifies the  Interrupt ID for 

which the corresponding handler will be executed.

Bit Description

0 Privilege Level (0 or 1)

1-31 Reserved

(Table 5.1. Interrupt Vector Entry Flags)

Interrupt  Handlers configured in the  Interrupt  Vector with  flag 0 

cleared  cannot  be  performed  by  Privilege  Level  1 (See  Section  3.1. 

Privilege Level 1) code. Attempts to do so will  cause a  Privilege Fault 

(See Section 6.1.12. Privilege Fault) to occur.

The  first  31  entries  of  the  Interrupt  Vector are  reserved  for 

Architecture-specific Interrupts. The entries ranging from 32 to 127 are 

reserved for User-defined Interrupts.
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Customized Interrupt Handlers may be assigned to all User-defined 

Interrupts and  for  Trappable  Architecture-specific  Interrupts.  The 

Operating System can perform such assignments through the INTR 0x01 

instruction.  Non-Trappable  Architecture-specific  Interrupts ignore  their 

corresponding entry at the  Interrupt Vector. Reserved entries belonging 

to  the  range  of  Architecture-specific  Interrupts are  considered  Non-

Trappable,  except  for  those  in  the  entry  ID  range  21-31  which  are 

reserved  for  implementation  specific  interrupts  (See  Section  1.6. 

Expansibility and Extensions). All User-defined Interrupts are considered 

Trappable.

Interrupt  Vector address  is  unmodifiable  and  its  located  at  the 

Memory Region 0x000-0x3F8 (127 * 8 bytes) on LEG32 Architecture and 

0x000-0x5F4 (127 * 12 bytes) on LEG64 Architecture. See Section 7.1. 

Reserved  Memory  Regions for  more  information  regarding  Reserved 

Memory Regions.

It is strongly recommended the reading of  Section 4.1.11. INTR, 

Section  5.2.1.  Interrupt  Vector  Configuration  Interrupt,  Section  5.3. 

User-defined Interrupts and  Section 5.4.  Interrupt Handling for  more 

information regarding this topic.

5.2. Architecture-specific Interrupts

Architecture-specific Interrupts are interrupts internally handled by 

the CPU. Their behavior is not allowed to be modified. This means that 

there’s no way to change the internal handler routine executed by the 

CPU. However, if the  Interrupt is  Trappable  (See  Section 5.1. Interrupt 

Vector), a customized Interrupt Handler can be assigned to the interrupt 

that will be executed right after the internal handler routine termination.

Architecture-specific  Interrupts handle  software  and  hardware 

events, such as Storage I/O requests, Display Output requests, Keyboard 

Input requests, Bad hardware detections, Interrupt Vector Configuration, 

etc.
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The list of Architecture-specific Interrupts are described in detail in 

the  following  subsections,  from  Section  5.2.1.  Interrupt  Vector 

Configuration Interrupt to Section 5.2.8. Timer Expiration Interrupt.

5.2.1. Interrupt Vector Configuration Interrupt

ID: 0x01

Type: Software Interrupt

Instruction: INTR 0x01

Parameters: RGP1, RGP2, RGP3

Required Privilege: Privilege Level 0

Faults: Permission Fault,

Bad Operation Value Fault

Trappable: No

Description: Setup a new handler routine which code starts at 

Memory Address pointed by  RGP3 value, with flags field defined by the 

value  of  RGP2,  for  the  Interrupt  ID defined by  the  value  of  RGP1.  If 

Privilege  Level for  the  task  causing  this  interrupt  is  different  than  0, 

Permission Fault will occur. If the Interrupt ID specified in RGP1 is invalid, 

a Bad Operation Value Fault will occur. To disable a previously configured 

Interrupt Handler for a given Interrupt ID, a INTR 0x01 instruction must 

be performed with RGP2 and RGP3 set to zero (0).

Notes: If a Fault occur, the fourth octet of RFF stores the Interrupt 

ID and the RFF bit 13 is set in order to indicate the occurring fault was 

caused by an  Interrupt  (See  Section 2.1.3. Fault Flags Register (RFF) 

and Section 6.1.14. Interrupt Fault).

5.2.2. Halt System Interrupt

ID: 0x03

Type: Software Interrupt

Instruction: INTR 0x03

Parameters: -
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Required Privilege: Privilege Level 0

Faults: Permission Fault

Trappable: No

Description: Halts the CPU. If  Privilege Level for the task causing 

this interrupt is different than 0, Permission Fault will occur.

Notes: If a Fault occur, the fourth octet of RFF stores the Interrupt 

ID and the RFF bit 13 is set in order to indicate the occurring fault was 

caused by an  Interrupt  (See  Section 2.1.3. Fault Flags Register (RFF) 

and Section 6.1.14. Interrupt Fault).

5.2.3. Keyboard Input Interrupt

ID: 0x09

Type: Hardware Interrupt

Instruction: -

Parameters: RGP1

Required Privilege: -

Faults: Input/Output Operation Fault

Trappable: Yes

Description: Indicates that the input from the keyboard occurred. 

The input  data is  stored at  register  RGP1.  An  Input/Output  Operation 

Fault (See Section 6.1.13. Input/Output Operation Fault) will occur if a 

failure receiving the keyboard data is detected.

Notes: If a Fault occur, the fourth octet of RFF stores the Interrupt 

ID and the RFF bit 13 is set in order to indicate the occurring fault was 

caused by an  Interrupt  (See  Section 2.1.3. Fault Flags Register (RFF) 

and Section 6.1.14. Interrupt Fault).
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5.2.4. Display Output Interrupt

ID: 0x0A

Type: Software Interrupt

Instruction: INTR 0x0A

Parameters: RGP1

Required Privilege: Privilege Level 0

Faults: Permission Fault,

Input/Output Operation Fault

Trappable: No

Description:  Reads  the  least  significant  byte  (see  Section  1.2. 

Endianess) from RGP1 as an ASCII code and sends it to Display Output. If 

Privilege  Level for  the  task  causing  this  interrupt  is  different  than  0, 

Permission Fault will  occur. If an error occur while communicating with 

display output,  a  Input/Output Operation Fault will  occur (See  Section 

6.1.13. Input/Output Operation Fault).

Notes: If a Fault occur, the fourth octet of RFF stores the Interrupt 

ID and the RFF bit 13 is set in order to indicate the occurring fault was 

caused by an  Interrupt  (See  Section 2.1.3. Fault Flags Register (RFF) 

and Section 6.1.14. Interrupt Fault).

5.2.5. Storage I/O Interrupt

ID: 0x0B

Type: Software Interrupt

Instruction: INTR 0x0B

Parameters: RGP1, RGP2, RGP3, RGP4, RGP5

Required Privilege: Privilege Level 0

Faults: Permission Fault, Bad Operation Value Fault,

Bad Memory Reference Fault,

Input/Output Operation Fault

Trappable: No

Description:  Performs  an  Input/Output  operation  on  a  storage 
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device identified by the Storage ID in the 2 least significant bytes of the 

RGP1 value. The 2 most significant bytes of RGP1 are a bit flag field for 

interrupt parameterization. Table 5.2 describes the acceptable flags:

RGP1 bit Description

16 Read Operation

17 Write Operation

18 Extended Offset

(Table 5.2. Storage I/O Interrupt RGP1 flags)

The  Extended  Offset flag  indicates  that  the  data  offset  to  be 

accessed is beyond the value that a 32bit unsigned integer can represent. 

If this bit isn’t set,  RGP2 holds the data offset value. If it is set,  RGP5 

extends the data offset value for an additional 32bits,  meaning that a 

64bit  data  offset  can  be represented  (the RGP1 bit  18  state  and  the 

register RGP5 is ignored on LEG64 Architecture). RGP3 value indicates the 

length  of  the  data  to  be  read  or  written.  RGP4 value  represents  the 

Memory Address from where the data should be read in the case of a 

storage write operation, or the Memory Address to where the data should 

be written in the case of a storage read operation.

Notes: If a Fault occur, the fourth octet of RFF stores the Interrupt 

ID and the RFF bit 13 is set in order to indicate the occurring fault was 

caused by an Interrupt (See Section 2.1.3. Fault Flags Register (RFF) and 

Section 6.1.14. Interrupt Fault).

5.2.6. Page Cache Invalidation Interrupt

ID: 0x0D

Type: Software Interrupt

Instruction: INT 0x0D

Parameters: RGP1

Required Privilege: Privilege Level 0

Faults: Permission Fault

Trappable: No
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Description: Informs the CPU that the page identified by 

the  Base Physical Address (See Section 7.4. Paging) value set on RGP1 

should be invalidated if it resides in the CPU page caching mechanism.

Notes: If a Fault occur, the fourth octet of RFF stores the Interrupt 

ID and the RFF bit 13 is set in order to indicate the occurring fault was 

caused by an  Interrupt  (See  Section 2.1.3. Fault Flags Register (RFF) 

and Section 6.1.14. Interrupt Fault).

5.2.7. Timer Configuration Interrupt

ID: 0x0F

Type: Software Interrupt

Instruction: INTR 0x0F

Parameters: RGP1,RGP2,RGP3

Required Privilege: Privilege Level 0

Faults: Bad Operation Value Fault, Permission Fault

Trappable: No

Description: Configure  an  internal  CPU  Timer (See 

Section  9.  Timers)  identified  by  the  Timer  ID value  on  RGP1,  with 

Granularity specified on RGP2 and Time to Expiration value on RGP3. The 

granularity  may  be  expressed  in  nanoseconds  (RGP2 bit  0  set), 

microseconds (RGP2 bit 1 set), milliseconds (RGP2 bit 2 set) or seconds 

(RGP2 bit  3  set).  The  granularity  defines  the  magnitude  of  the  RGP3 

value. Note that RGP2 flags are mutual exclusive. If more than one flag is 

set, a Bad Operation Value Fault will occur. This fault will also occur if the 

ID set on RGP1 value is invalid. Permission Fault occur if a task or process 

running at Privilege Level 1 attempts to setup a Timer.

Notes: If a Fault occur, the fourth octet of RFF stores the Interrupt 

ID and the RFF bit 13 is set in order to indicate the occurring fault was 

caused by an  Interrupt  (See  Section 2.1.3. Fault Flags Register (RFF) 

and Section 6.1.14. Interrupt Fault).
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5.2.8. Timer Expiration Interrupt

ID: 0x10

Type: Hardware Interrupt

Instruction: -

Parameters: RGP1

Required Privilege: -

Faults: -

Trappable: Yes

Description: Indicates  that  the  Timer  identified  by  the 

RGP1 value has expired.

5.3. User-defined Interrupts

User-defined  Interrupts are  a  set  of  configurable  Software 

Interrupts.  A  process  running  at  Privilege  Level  0 may  configure  an 

Interrupt Handler routine in the  Interrupt Vector that will  be executed 

when  the  instruction  INTR is  performed  for  that  Interrupt  ID as  its 

operand (See Section 4.11. INTR). These interrupts can be configured to 

be  permitted  to  be  executed  by  tasks  or  processes  running  on  any 

Privilege Level of the CPU. If it is intended that a User-defined Interrupt 

Handler  Routine shall  be  permitted  for  either  Privilege  Level  0 and 

Privilege Level 1 tasks or processes, its flags field at the Interrupt Vector 

shall indicate so. See Section 5.1. Interrupt Vector for more information 

regarding this topic.

There  are  96  User-defined  Interrupts  available,  ranging  from 

Interrupt Vector entry 32 to entry 127.

See  Section  5.  Interrupts,  Section  5.1.  Interrupt  Vector and 

Section 5.4. Interrupt Handling for more information regarding this topic.
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5.4. Interrupt Handling

Interrupt  Handling is  the  capability  to  handle  Interrupts through 

Interrupt Handler Routines. An Interrupt Handler is a procedure that take 

actions to properly handle an Interrupt. Interrupt Handlers may be either 

internal  CPU  routines  or  user-defined  routines.  See  Section  5.2. 

Architecture-specific  Interrupts and  Section  5.3.  User-defined 

Interrupts.

For user-defined routines the  Interrupt Vector should be properly 

configured to  cause the CPU to execute the custom  Interrupt  Handler 

when a  given  Interrupt occurs.  See  Section  5.1.  Interrupt  Vector for 

more information regarding this topic.

Notes:  It  is  important  to  note  that  initial  communication  with 

external hardware devices is mostly performed via Interrupt Handlers on 

LEG Architectures. The full understanding of Interrupt mechanism for LEG 

Architecture is required in order to implement efficient operating systems 

based on this  architecture.  See  Section 5.  Interrupts and all  its  sub-

sections for detailed information regarding Interrupts.
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6. Faults

Faults occur when the CPU detects a state that it is unable to handle 

by  itself.  Usually  these  states  can  be interpreted  and handled  by  the 

operating system, forcing the CPU to return to a state where it is possible 

to continue its execution in a non-fault state. A routine that interpret a 

Fault state and force the CPU to return to a non-fault state is called a 

Fault Handler. Fault Handlers can be configured through the RST and RFA 

register  (See  Section 2.1.2.  Status  Register  (RST) and  Section 5.1.4. 

Fault-Handler Address Register (RFA)).

If a Fault occurs and RST bit 1 is set, the CPU execution is halted. 

This means that the CPU won’t recover from the  Fault State until it is 

restarted.

The next section describes the possible  Fault States (Section 6.1. 

Fault States) that can be detected by the CPU.

6.1. Fault States

Fault  States are  machine  state  conditions  that  the  CPU  cannot 

handle by itself and require operating system procedures to allow the CPU 

to recover from a Fault State to a non-Fault State to avoid a halt state. 

Unhandled faults will cause the CPU to halt its execution and will require a 

CPU restart.

The  following  sub-sections  (from  Section  6.1.1.  Machine  Check 

Fault to  Section  6.1.14.  Interrupt  Fault)  describe  the  possible  Fault 

States implemented in LEG Architecture.

6.1.1. Machine Check Fault

RFF bit: 0

Caused By: Bad Hardware

Handleable: No
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Description: This  state  may  occur  when  an  internal  CPU 

component or external hardware device that communicate directly with 

the CPU behaves unexpectedly, or when an unrecoverable fault state is 

detected. Two practical examples that may cause this fault to occur are 

the CPU being unable to  communicate with  system memory due to  a 

system bus failure, or when the  Task Structure pointed by  RBT isn't a 

Privilege  Level  0 task.  Please  refer  to  Section  2.1.2.  Status  Register 

(RST),  Section 2.1.5.1. Base Task Register (RBT),  Section 3. Privilege 

Levels and  Section 8.1. Task Structure for more information regarding 

this topic.

6.1.2. Bad Memory Reference Fault

RFF bit: 1

Caused By: An invalid memory reference was used as an

operand of an instruction.

Handleable: Yes

Description: This state occur when an invalid memory reference 

is  used as an operand on a memory operation instruction.  A practical 

example that cause this state is the use of a memory reference beyond 

the available system memory or the use of memory reference that points 

to  a  Reserved  Memory  Region (See  Section  7.1.  Reserved  Memory 

Regions).

6.1.3. Bad Register Reference Fault

RFF bit: 2

Caused By: Invalid Register ID detected on an Instruction

Opcode.

Handleable: Yes

Description: This state occur when a valid Instruction Opcode is 

interpreted, but one of its operands references an invalid Register ID. See 
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Section 4. Instruction Set for more information regarding  Register IDs 

and Instruction Opcodes.

6.1.4. Bad Register Value Fault

RFF bit: 3

Caused By: Unexpected Register Value

Handleable: Yes

Description: This state occur when a CPU  Register is set with 

an unexpected value. A practical example that cause this state is the use 

of  reserved  flags  or  an  unspecified  combination  of  flags  on  Control 

Registers (See Section 2.1. Control Registers)

6.1.5. Bad Operation Value Fault

RFF bit: 4

Caused By: An unexpected value was detected while

performing an operation.

Handleable: Yes

Description: This  state  occur  when  an  unexpected  operand 

references a value for an instruction that is unable to handle it. A practical 

example that cause this state is  the  INTR 0x01 instruction with  RGP2 

register set to some value greater than 127. This instruction will request a 

modification in the Interrupt Vector at an entry greater than 127. The 

Interrupt Vector only addresses 127 entries. See  Section 4.1.11.  INTR 

and Section 5.1. Interrupt Vector.

6.1.6. Illegal Interrupt Fault

RFF bit: 5

Caused By: Illegal operand value for INTR instruction.

Handleable: Yes
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Description: This  state  occur  when  an  invalid  Software 

Interrupt ID is used as operand value for the INTR instruction.

6.1.7. Illegal Instruction Fault

RFF bit: 6

Caused By: An unspecified opcode was loaded into RIP

register.

Handleable: Yes

Description: This  state occur when an unspecified instruction 

opcode referenced by  RIP register value was tried to be executed. See 

Section  4.  Instruction  Set for  more  information  regarding  instruction 

opcodes.

6.1.8. Floating Point Unit Fault

RFF bit: 7

Caused By: An exception occurred during a Floating Point

Operation at the FPU.

Handleable: Yes

Description: This  state  occur  when  an  exception  is  detected 

while  performing  a  Floating  Point  Operation in  the  FPU.  A  practical 

example  that  cause  this  state  is  an  arithmetic  operation  involve  RFP 

registers  that  attempts  to  divide  a  value  by  zero.  See  Section  1.3. 

Floating-Point  Numbers for  more  information  regarding  Floating  Point 

Operations.

6.1.9. Arithmetic Logic Unit Fault

RFF bit: 8

Caused By: An exception occurred during an Arithmetic or 
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Logic Operation at the ALU.

Handleable: Yes

Description: This  state  occur  when  an  exception  is  detected 

while performing an Arithmetic or Logic Operation at the ALU. A practical 

example that cause this state is  an arithmetic operation involving RAL 

registers that attempts to divide a value by zero.

6.1.10. Page Permission Fault

RFF bit: 9

Caused By: Operation not permitted on a Logical Address

Reference.

Handleable: Yes

Description: This  state  occur  when  the  CPU  attempts  to 

perform an operation that is not permitted over a Logical Address due to 

its Page Permissions (See Section 7.4.3. Page Permissions) or an invalid 

combination of permission were used in the Flags field of Page Structure 

(See Section 7.4.1. Page Structure). A practical example that cause this 

state is the attempt to write a read-only Page or a code execution attempt 

on a non-executable Page.

6.1.11. Page Fault

RFF bit: 10

Caused By: A Page, needed to translate a Logical Address,

wasn’t found

Handleable: Yes

Description: This  state  occur  when  a  Logical  Address is 

referenced by an memory handling operation and the CPU was unable to 

find  a  Page to  translate  it  to  a  Physical  Address.  See  Section  7.4.2. 

Address Translation for more information regarding this topic.
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6.1.12. Privilege Fault

RFF bit: 11

Caused By: Code running at Privilege Level 1 attempted a

Privilege Level 0 operation.

Handleable: Yes

Description: This state occur when a task or process running at 

Privilege Level 1 attempts to perform an operation that is only permitted 

at  Privilege  Level  0.  A  practical  example  that  cause  this  state  is  an 

attempt to execute LTSK instruction (See Section 4.1.14. LTSK) with RST 

bit  3  set.  See  Section  2.1.2.  Status  Register  (RST) and  Section  3. 

Privilege Levels for more information regarding this topic.

6.1.13. Input/Output Operation Fault

RFF bit: 12

Caused By: An Input/Output Operation has failed due to

communication problems with an external

hardware device.

Handleable: Yes

Description: This state occur when an Input/Output operation 

have failed due to a communication problem while interacting with an 

external hardware device. This Fault may be caused due to an Interrupt 

that  was  performing  an  Input/Output  operation.  See  Section  5.3. 

Keyboard  Input  Interrupt,  Section  5.4.  Display  Output  Interrupt and 

Section 5.5. Storage I/O Interrupt for more information regarding this 

fault state.

6.1.14. Interrupt Fault

RFF bit: 13

Caused By: -

Handleable: -
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Description: This  special  RFF flag  does  not  indicate  a  Fault 

State, but that some Fault State set at RFF was caused while executing an 

Architecture-specific Interrupt  Handler.  The  Interrupt  ID for  which  the 

handler was being executed is stored at the fourth octet of RFF register. 

See  Section  2.1.3.  Fault  Flags  Register  (RFF) and Section  5.2. 

Architecture-specific  Interrupts for  more  information  regarding  this 

topic.

6.2. Fault Handling

Fault Handling is the capability to handle Fault States through Fault 

Handler Routines. A  Fault Handler Routine is responsible to recover the 

CPU from a Fault State into a non-Fault State. Fault Handling is disabled 

by default when the CPU is initialized. To enable Fault Handling, the RST 

bit 1 shall be set (See Section 2.1.1. Status Register (RST)).

LEG Architecture implements  a  Control  Register called  RFA (See 

Section 2.1.4. Fault-Handler Address Register (RFA)) which value shall 

point to a Logical or Physical Address, depending on the RST bit 4 state 

(See  Section 2.1.1.  Status Register  (RST)),  that  contain an Operating 

System  routine  responsible  for  handling  Fault  States.  The  Operating 

System will be able to identify the  Fault State through the  RFF register 

(See  Section  2.1.3.  Fault  Flags  Register  (RFF))  and  take  appropriate 

actions to recover CPU to a non-Fault State.

If  Fault Handling is enabled and no action is taken in the routine 

pointed by RFA for a occurred Fault, the CPU will enter in an endless loop 

if the Fault was caused by an instruction, since this instruction will  be 

restarted after the Fault Handler routine completes.

It is important to note that the Operating System is responsible to 

clear RFF register after the Fault Handler completes all its procedures.

See  Section  6.  Faults and  Section  6.1.  Fault  States for  more 

information regarding these topics.
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7. Memory Management

This section intends to describe the implemented features on  LEG 

Architecture for memory management. It will also describe recommended 

practices  and  implementation  choices  that  can  be  implemented  in  an 

Operating System intended to run on a LEG Architecture CPU.

A  LEG Architecture CPU can access memory through two different 

addressing modes: Physical Address Access and Logical Address Access.

Physical Addresses are memory references that directly point to a 

system memory  address,  while  Logical  Addresses are  Virtual  Memory 

Addresses that need to be translated to their respective Physical Address 

through an Address Translation (See Section 7.4.2. Address Translation) 

mechanism before the data can be accessed.

The Operating System may choose whether a task should use or not 

Virtual Memory by properly configuring the RST bit 4 (See Section 2.1.2. 

Status Register (RST)).  Paging, or  Virtual Memory, is enabled on a per 

Task  Context basis,  which  means  that  the  Operating  System  is  able 

manage  tasks  using  Logical  Addressing and  tasks  using  Physical 

Addressing depending on the RST bit 4 status for each task. See Section 

2.1.6.  Paging  Address  Register and  Section  7.4.  Paging for  more 

information regarding this topic.

7.1. Reserved Memory Regions

LEG Architecture specifies memory regions that cannot be accessed 

directly by the Operating System. Attempts to do so will generate a Bad 

Memory  Reference  Fault (See  Section  6.1.2.  Bad  Memory  Reference 

Fault).

Usually  these  regions  are  configurable  CPU  data  structures  that 

require a specific  Instruction or  Interrupt to perform operations over its 

contents.
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Table 7.1 specifies the  Reserved Memory Regions that cannot be 

accessed directly:

From To Description

0x000 0x3F8 Interrupt Vector (LEG32) 

0x000 0x5F4 Interrupt Vector (LEG64)

(Table 7.1. Reserved Memory Regions)

For  more  information  regarding  Interrupt  Vector,  please  refer  to 

Section 5.1. Interrupt Vector.

7.2. Physical Address Space

Physical Address Space is specified as being the total addressable 

space of  the total  available  system memory.  A  Physical  Address value 

addresses a real position in the system memory. Instructions executed 

from an Operating System task with  Paging disabled (RST bit 4 unset) 

that reference a memory address, will instruct the CPU to directly access 

that  address  in  system memory.  (See  Section  2.1.2.  Status  Register 

(RST) and Section 7.4. Paging)

Physical  Address  Space management  does  not  implement  a 

Permissions mechanism to permit or deny accesses for a given memory 

reference being referenced by an  Instruction. In order to grant certain 

access  Permissions to specific memory region,  Paging must be enabled 

(See Section 7.4. Paging).

7.3. Logical Address Space

Logical Address Space, also known as Virtual Memory, is an address 

space whose referenced  memory addresses  do  not  point  directly  to  a 

Physical Address. They instead refer to a logical value that needs to be 

translated  through  an  Address  Translation mechanism  that  is 

implemented as part of the Paging mechanism (See Section 7.4. Paging).
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Logical  Address  Translations (See  Section  7.4.2.  Address 

Translation) are internally performed by the CPU which loads the Paging 

Address  Register (See  Section  2.1.6.  Paging Address  Register  (RPA)) 

value and looks for Page Structures (See Section 7.4.1. Page Structure) 

in order to identify which Page describes the referenced Logical Address. 

Once identified, the CPU translates that  Logical Address into a  Physical 

Address. After translation routine is completed, the  Physical Address is 

accessed and the requested operation over its contents is performed.

If the CPU fails to find no  Page describing the referenced  Logical 

Address, a Page Fault occur (See Section 6.1.11. Page Fault).

7.4. Paging

Paging is  a  mechanism  that  allows  the  translation  of  Logical 

Addresses into their  respective  Physical  Addresses through an  Address 

Translation (See  Section  7.4.2.  Address  Translation)  mechanism, 

validating the  Page Permissions (See  Section 7.4.3. Page Permissions) 

for that Logical Address, based on the operation being performed over it.

It  permits  the  implementation  of  Virtual  Memory  Management 

approaches,  bringing  the  possibility  to  map  non-contiguous  physical 

memory blocks into linear virtual address blocks. This can greatly reduce 

the complexity of the Operating System Memory Management mechanism 

and  allow  improved  security  since  Pages implement  a  permission 

mechanism (See Section 7.4.3. Page Permissions).

The following sub-sections (from  Section 7.4.1. Page Structure to 

Section 7.4.3. Page Permissions) will describe, in detail, how the Paging 

mechanism is implemented in LEG Architectures and how it behaves.

7.4.1. Page Structure

A Page Structure is a data structure that instructs how the CPU will 
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translate  Logical Addresses into  Physical Addresses (See  Section 7.4.2. 

Address Translation) and evaluate the permitted operations over those 

memory addresses.

A Page Structure maps a Virtual Memory Region (or Logical Address 

Region) into a  Physical  Memory Region by describing base pointers  to 

Logical and  Physical  Addresses,  the  respective  Size of  the region,  the 

permissions of the region, and two pointers that will point to the next and 

previous  Page belonging to same Task Address Space (See Section 8.2. 

Task Address Space).

The  Operating  System is  responsible  for  creating  and  managing 

Page Structures. Each time a Logical Address is referenced, the CPU will 

try to find the correct  Page Structure by first loading a Page Structure 

from the RPA (See Section 2.1.6. Paging Address Register (RPA)) value 

and lookup for an entry that describes that  Logical Address in order to 

evaluate its permissions and to correctly translate it to a Physical Address.

Page Structure for LEG32 Architecture is specified in Table 7.2.

Page Structure for LEG64 Architecture is specified in Table 7.3.

The Flags field options are specified in Table 7.4.

Field Size Description

Base Logical Address 32bit 32-bit value for Base Logical Address

Base Physical Address 32bit 32-bit value for Base Physical Address

Size 32bit Size of the memory region

Flags 32bit Bit flag field

Next Page 32bit Pointer to the next page

Previous Page 32bit Pointer to the previous page

(Table 7.2. Page Structure for LEG32 Architecture)
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Field Size Description

Base Logical Address 64bit 64-bit value for Base Logical Address

Base Physical Address 64bit 64-bit value for Base Physical Address

Size 64bit Size of the memory region

Flags 64bit Bit flag field

Next Page 64bit Pointer to the next page

Previous Page 64bit Pointer to the previous page

(Table 7.3. Page Structure for LEG64 Architecture)

Bit Description

0 Read-Only Permission

1 Read/Write Permission

2 Executable Permission

(Table 7.4. Page Structure Flags Description)

Note that bits 0 and 1 of Page Structure Flags are mutual exclusive 

(See Section 7.4.3. Page Permissions). If a Page Flags is found to have 

both bit 0 and bit 1 set, a Page Permission Fault will occur (See Section 

6.1.10. Page Permission Fault).

7.4.2. Address Translation

Address Translation is a mechanism used by the CPU to translate 

Logical Addresses into Physical Addresses.

When  a  Task,  with  Paging enabled  (See  Section  2.1.2.  Status 

Register (RST)), references a Logical Address in a memory operation, the 

CPU will  try  to  find  a  suitable  Page,  through  all  the  Page  Structures 

defined  for  that  task,  that  maps  the  memory  region  containing  that 

Logical Address. This mechanism is known as Page Lookup. It is important 

to note that the Operating System is responsible to properly set the RPA 

register  (See  Section  2.1.6.  Paging Address  Register  (RPA))  value  to 
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point to a valid Page Structure (See Section 7.4.1. Page Structure) entry 

belonging  to  the  current  Task  Address  Space (See  Section  8.2.  Task 

Address Space).

After a suitable  Page is identified, the CPU will  first evaluate the 

Permissions for that Page and grant that the requested operation can be 

performed. If this sanity check fails, a  Page Permission Fault will occur 

(See Section 6.1.10. Page Permission Fault). If the CPU is unable to find 

a suitable  Page containing the referenced  Logical Address, a  Page Fault 

will occur (See Section 6.1.11. Page Fault).

In order to identify if a  Page is suitable for the translation (Page 

Lookup), the CPU load the Page Structure pointed by the RPA register and 

performs the following operations:

• Verify if the referenced Logical Address value is greater than the 

Base Logical Address value found in the current Page Structure.

• Add the  Size value of the current  Page Structure to the  Base 

Logical Address.

• Verify if the referenced Logical Address value is lesser than the 

computed value in the previous step.

• Return success if the last condition is true.

• If the last condition is false, it loads the Next pointer as a Page 

Structure and performs all the previous operations again.

Being  a  suitable  Page identified  and  the  permissions  verification 

successfully passed (See Section 7.4.3. Page Permissions), the CPU will 

perform the following operations:

• Compute the offset of the referenced  Logical Address from the 

Base Logical Address value found in the current Page Structure.

• Add that offset to the Base Physical Address value found in the 

Page Structure.

• Return the computed value as the translated Physical Address.
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7.4.3. Page Permissions

Each  Page  Structure contains  a  field  named  Flags (See  Section 

7.4.1. Page Structure) that allow the Operating System to configure the 

memory  operations  that  may  be  performed  over  the  memory  region 

described by that Page.

Three permission options can be configured for a Page:

• Read-Only Permission

• Read/Write Permission

• Executable Permission

The  Read-Only Permission and  Read/Write Permission are mutual 

exclusive. If both are set, a  Page Permission Fault (See Section 6.1.10. 

Page  Permission  Fault)  will  occur.  For  information  regarding  Page 

Permissions configuration, please refer to Section 7.4.1. Page Structure.

In  order  to  evaluate  if  the  requested  operation  over  a  Logical 

Address is permitted, the CPU performs the following steps:

• Evaluate if the operation is a Read, a Write, or an Instruction 

execution.

• If the operation is a Read, the flag Read-Only or Read/Write must 

be set. If none of these flags are set, a Page Permission Fault will 

occur.

• If the operation is a Write, the flag Read/Write must be set. If 

not set, a Page Permission Fault will occur.

• If the operation is an Instruction execution, the flag Executable 

must be set. If not set, a Page Permission Fault occur.

• By  successfully  passing  all  the  previous  sanity  checks,  the 

operation is granted.

The  steps  described  above  are  known  as  Permission  Check 

mechanism.  They  are  performed  after  Page  Lookup and  before  the 

Address  Translation.  If  the  permission  check fails,  Address  Translation 

won’t be performed.

63



8. Multi-Tasking

LEG  Architecture  specifies  two  Control  Registers,  called  Task 

Registers (See  Section  2.1.5.  Task  Registers),  intended  to  allow  the 

implementation of  Multi-Tasking Operating Systems through a  Context 

Switching mechanism (See Section 8.3. Context Switching).

These  registers  are  intended  to  point  to  Task  Structures (See 

Section  8.1.  Task  Structure).  The  memory  addresses  whose  Task 

Registers point to are managed by the Operating System.

The RBT register (See Section 2.1.5.1. Base Task Register (RBT)) 

should point to the Task Structure of Operating System kernel task, while 

the RCT (See Section 2.1.5.2. Current Task Register (RCT)) should point 

to the Task Structure of the current user-land task.

When  a  Context  Switch occur,  Task  Registers are  internally 

evaluated by the CPU in order to load or save the current registers’ states 

into the respective Task Structure the register points to. Refer to Section 

8.3. Context Switching for more information regarding this topic.

8.1. Task Structure

A  Task Structure is a data structure that allows the CPU to save 

Task Contexts whenever a Context Switch occur. This concept allows the 

Operating System to manage different tasks without losing their contexts 

whenever a Context Switch occur (See Section 8.3. Context Switching).

The  data  structure  that  describes  a  Task  Structure for  LEG32 

Architecture is specified in  Table 8.1. For  LEG64 Architecture, the  Task 

Structure is specified in Table 8.2.
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Field Size Description

Registers 112 bytes
Registers’ contents.

Size: 28 registers times 32-bits

Process ID 4 bytes Unique task or process identifier

(Table 8.1. Task Structure Description for LEG32 Architecture)

Field Size Description

Registers 224 bytes
Registers’ contents.

Size: 28 registers times 64-bits

Process ID 4 bytes Unique task or process identifier

(Table 8.2. Task Structure Description for LEG64 Architecture)

The Registers Field can be viewed as a sub-structure that describe 

all the implemented registers. The order in which the registers must be 

placed is: RIP, RST, RFF, RFA, RBT, RCT, RPA, RRA, RSA, RCMP, RLGIC,  

RARTH,  RGP1,  RGP2,  RGP3,  RGP4,  RGP5,  RGP6,  RGP7,  RGP8,  RAL1,  

RAL2, RAL3, RAL4, RFP1, RFP2, RFP3 and RFP4.

Task Structures location in system memory must be managed by 

the Operating System. The Operating System shall then properly set RBT 

and  RCT registers values to correctly point to the  Task Structures. See 

Section  2.1.5.  Task  Registers  (RBT  and  RCT) for  more  information 

regarding this topic.

8.2. Task Address Space

A Task Address Space is considered to be all the memory regions 

used by a task or process. This includes all the Heap, Stack and Code 

memory regions.

When  Paging (See  Section 7.4.  Paging)  is  disabled,  this  concept 

may  be  ignored.  When  Paging is  enabled  for  a  given  task,  the  Task 

Address Space is then considered as all the Page Structures (See Section 
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7.4.1.  Page  Structure)  belonging  to  that  task  and  at  least  one  Page 

Structure must be pointed by the RPA register (See Section 2.1.6. Paging 

Address Register (RPA)) in order to the CPU identify at least one  Page 

Structure belonging to that task.

8.3. Context Switching

A  Context  Switch is  considered  to  be  an  interruption  of  code 

execution on the current context by the CPU in order to handle another 

event that requires the immediate attention of the CPU.

Context  Switching occur  whenever  an  Interrupt (See  Section  5. 

Interrupts)  or  Fault (See  Section  6.  Faults)  occur  or  when  a  LTSK 

instruction  (See  Section  4.14.  LTSK)  is  executed.  In  order  to  disable 

Context  Switches when  an  Interrupt or  Fault occur,  RST bit  2  (See 

Section 2.1.2. Status Register (RST)) must be cleared.

Whenever a  Context Switch occur, the  Task Structures referenced 

by the Task Registers (See Section 2.1.5. Task Registers (RBT and RCT)) 

are  loaded  or  updated  by  the  CPU,  depending  on  what  caused  that 

Context Switch. The operations performed by the CPU when a  Context 

Switch occur are described below:

• The Task Structure pointed by RBT is loaded whenever a Fault or 

Interrupt occur and it is updated whenever a LTSK instruction is 

executed.

• The  Task Structure pointed by  RCT is loaded whenever a  LTSK 

instruction is executed and it is updated whenever a a  Fault or 

Interrupt occur.

Context  Switching is  an important  part  of  the Operating System 

Task  Management mechanism.  It  is  strongly  recommended,  when 

implementing  Task  Management mechanism  for  an  Operating  System 

based on LEG Architecture, the full understanding of the Section 8. Multi-

Tasking, all its sub-sections and all the recommended  sections or sub-

sections that may be referenced.
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9. Timers

LEG Architecture specifies eight (8) internal CPU Timers that can be 

used for time elapsing. These Timers can only be configured at Privilege 

Level 0 (See Section 3.1 Privilege Level 0). Attempts to setup a Timer at 

Privilege Level 1 will cause a Privilege Fault (See Section 6.1.12. Privilege 

Fault) to occur.

The  following  sub-sections  (Section  9.1.  Timer  Parameters and 

Section  9.2.  Timer  Configuration)  will  describe  the  available  timer 

parameters and how to setup them.

9.1. Timer Parameters

A  Timer is  data  structure  with  three  (3)  elements:  Timer  ID, 

Granularity and Time to Expiration (TTE).

The Timer ID identifies the timer. Valid Timer ID values range from 

0 to 7.

Granularity defines the magnitude of the TTE value. It can represent 

nanoseconds,  microseconds,  milliseconds  and  seconds.  Table  9.1 

describes the implemented Granularity Flags for each available option.

Granularity Flag Description

0x01 Nanoseconds (ns)

0x02 Microseconds (us)

0x04 Milliseconds (ms)

0x08 Seconds (s)

(Table 9.1. Granularity ID values)

Time to Expiration is the amount of time that will elapse since the 

Timer is activated, until it expires and causes a Timer Expiration Interrupt 

(See Section 5.2.8. Timer Expiration Interrupt).
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9.2. Timer Configuration

Timers  are  configured  through  a  Timer  Configuration  Interrupt. 

Detailed information regarding this topic can be found on Section 5.2.7. 

Timer Configuration Interrupt.

If an invalid value of Timer ID or an invalid Granularity Flag is used 

while configuring the Timer, a Bad Operation Value Fault will occur (See 

Section 6.1.5. Bad Operation Value Fault).
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VI. Appendixes

Appendix A – Bootloader Example

For the purpose of illustration of how to develop a basic bootloader 

on LEG Architecture, it is assumed that there's an external controller that 

reads the bootloader binary data from a storage device and loads it into 

system memory at the first memory address available that doesn't belong 

to a  Reserved Memory Region (See  Section 2.1.1.  Instruction Pointer 

Register (RIP) and Section 7.1. Reserved Memory Regions).

Being that granted and assuming that the bootloader binary data 

length doesn't exceed 2048 bytes, the following assembly code will load 

an Operating System kernel, which size is described by a 32-bit integer 

value stored at  the address 0x800 on the system device identified  as 

Storage ID 0, into the system memory address 0x1000 and perform a 

JMP (See  Section  4.6.  JMP) instruction  into  this  address  after  the 

bootloader process completes:

1. .start:

2.     cpvl 0x00, rst          # Disabled: Interrupts,FH,Tasking,Paging 

3.     cpvl 0x10000, rgp1      # I/O Read from storage ID 0

4.     cpvl 0x800, rgp2        # Start Read at 0x800

5.     cpvl 4, rgp3            # Read 4 bytes

6.     cpvl 0x1000, rgp4       # Store at memory address 0x1000

7.     intr 0x0B               # Perform Storage I/O read

8.     cpr  rpg4, rgp3         # Load kernel size

9.     cpvl 0x804, rgp2        # Start read kernel binary at 0x804

10.    intr 0x0B               # Perform Storage I/O read

11.    cpvl 0x01, rcmp         # Enable JMP

12.    jmp  0x1000             # Start kernel code execution
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Appendix B – Debugging Techniques

Although LEG Architecture does not specify debugging mechanisms, 

there are several techniques that can be used in order to do so.

Breakpoints are possible to be implemented by configuring a User-

Defined Interrupt (See Section 5.3. User-Defined Interrupts). A debugger 

can use the instruction that causes this interrupt to occur to replace the 

instruction where the breakpoint  is  required and the interrupt  handler 

may be used to perform the analysis. After the analysis is completed, the 

interrupt handler shall replace the interrupt instruction with the original 

instruction  and  correctly  adjust  RIP (See  Section  2.1.1.  Instruction 

Pointer Register) address in order to point to it.

More  complex  and  robust  mechanisms  may  be  implemented  for 

Multi-Tasking Operating Systems by implementing one or more system 

calls for debugging purposes.
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Appendix C – Multi-Tasking Process Scheduler

The  implementation  of  a  simple  Multi-Tasking  Process  Scheduler 

may be accomplished by using the Multi-Tasking mechanisms available on 

LEG  Architecture (See  Section  8.  Multi-Tasking)  along  with  properly 

configured Timers (See Section 9. Timers).

By configuring a  Timer each time a  LTSK instruction is used (See 

Section 4.14. LTSK), it is possible to grant the amount of CPU time that is 

allocated to a specific task. A process scheduler in a round-robin fashion, 

may perform the following steps:

• Load RCT with the address of the next Task Structure.

• Setup  a  Timer  with  the  amount  of  time  the  task  should  be 

running.

• Perform a LTSK instruction.

• When the Timer expires, a Timer Expiration Interrupt is caught.

• The interrupt handler informs the Process Scheduler.

• Repeat all the steps above.

This simplified algorithm allocates the same amount of processing 

time to every existing task.

For  more  information  regarding  this  topic,  please  read  the 

recommended sections referenced above and also the Section 2.1.5. Task 

Registers (RBT and RCT) and Section 5. Interrupts.
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Appendix D – Interrupts and Context Switching

Interrupt Handling must be designed properly in order to efficiently 

work  on  a  Multi-Tasking  Operating  System,  avoiding  multiple  context 

switches on the same task context.

To  avoid  interrupt  occurrence  inside  an  interrupt  handler,  it  is 

required the interrupt handler code to disable interrupt handling at  its 

very first instruction, by clearing the RST bit 0.

Also,  if  a fault occur during the interrupt handler execution,  one 

should  avoid  a  new  context  switch  to  RBT  Task  Structure when  the 

current context is already the Base Task Context. It is recommended that 

the  Base Task  have the context switches disabled during the interrupt 

handler execution by clearing the RST bit 2.

By implementing this approach, it  is  granted that interrupts only 

occur on User-Space tasks, causing the desired context switch to  RBT 

Task Structure. This approach also grants that if a fault occur inside an 

interrupt handler routine, a context switch won't occur.

Note that the context switching should be enabled by setting the 

RST bit 2 before the LTSK instruction is called, as this instruction will take 

no effect if task registers are disabled.

For  a  better  understanding  of  this  approach,  it  is  strongly 

recommended the  complete  read  and  understanding  of  Section  2.1.2. 

Status  Register  (RST),  Section  2.1.5.  Task  Registers  (RBT and  RCT), 

Section 4.1.14. LTSK, Section 5. Interrupts and Section 8. Multi-tasking.
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