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CHAPTER 1 

LINUX ENHANCED SECURITY OVERVIEW 

 

1 CHAPTER 1: THE LINUX ENHANCED SECURITY OVERVIEW 

1.1 THE LINUX ENHANCED SECURITY PROJECT 

 

The Linux Enhanced Security is a free software project, released under the GNU General Public 

License, which aims at the development of Linux based security patches as well as user-land tools meant 

to aid security and provide GNU/Linux based system administrators with extended abilities and control over 

their hosts and networks.  
 

→ Visit our web site at http://www.lesecurity.org. 

 

1.2 ARCHITECTURE SUPPORT 

 
The Linux Enhanced Security is meant to support multiple architectures. Although current 

development releases supports only x86, future releases will support a broader set of architectures. 

 

1.2.1 Supported Architectures and Architecture Dependent Features 

 
Since multiple architectures are supported, it is expectable to have certain architecture specific options 
available. We can’t forget also, that each architecture has its unique behaviour and this will have direct 

influence in the behaviour of Linux Enhanced Security features. 

 

1.2.1.1 x86 Architecture (32 bits) (i386) 

 

This architecture is currently supported. All features were designed to work with it. 

1.2.1.2 IA-64 Architecture 

 
Not currently supported (support will be probably added on series 1.x). 
 

1.2.1.3 x86-64 Architecture (EM64T based chipsets) 

 
Not currently supported (support will be probably added on series 1.x). 
 

1.2.1.4 Sparc Architecture 

 
Not currently supported (support will be probably added on series 1.x). 
 

1.2.1.5 Alpha Architecture 

 
Not currently supported (support will be probably added on series 1.x). 
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1.2.1.6 PPC Architecture 

 
Not currently supported (support will be probably added on series 1.x). 

 

1.2.2 SMP Support 

 

When Symmetric Multi-Processing (SMP) support is compiled, the Kernel is prepared to handle 

more than one processor at the same time. This kind of support will need locking mechanisms that allow 
concurrent accesses to the same shared memory region work with data integrity guarantees.  

 

1.2.2.1 SMP Safety 

 

All features provided by Linux Enhanced Security are SMP safe and should work as expected. 

 

1.3 THE LINUX ENHANCED SECURITY INTERNALS 

 

Whenever a Linux Enhanced Security features is triggered within the Kernel, a well defined API is 

used to access important structures and execute those functionalities. 
 

1.3.1 The lesec() System Call 

 

The lesec() system call was designed to allow the interaction between user-space applications and 

kernel-space features implemented by Linux Enhanced Security. 

 

This system call can only be executed by the super-user and has the following prototype: 

 
int lesec(int call, void *data, int op); 

 

The call argument expects an integer value that specifies which feature we're invoking. For instance, if we 

wish to call the chpown (→ see section 5.1) operation, then we'll need to specify the call argument as 

“LESEC_CHPOWN_CALL”. 

 

The data argument expects a pointer to a structure needed by call handlers to perform the requested 

operation. For instance, the “LESEC_CHPOWN_CALL” has a handler, the chpown_call() system call, 

which expects a structure containing an uid, gid and pid values whenever the “CHPOWN_WRITE” 

operation is requested.  
 

The op argument specifies the operation that will be executed. For instance, if we wish to write data into the 

Kernel, to be handled by the “LESEC_CHPOWN_CALL” handler, then we'll specify the operation as 

“CHPOWN_WRITE”. 

 

These interactions are made by all implemented features that need access to kernel-space. 

 
 

Related Sections 
 

1.3.2 Accessing Data Structures  

5.1 Change Process Owner (chpown) 
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1.3.2 Accessing Data Structures 

 
Whenever a pointer to a data structure is passed as an argument to the lesec() system call, the kernel-

space implementation needs to know what kind of structure it is. We identify it trough the call and op 

arguments, which will then allow us to cast the void pointer to a known data structure. 
 

After the type cast we copy the entire data structure from the user-space memory to kernel-space 

memory, avoiding direct interactions with user-space memory. This is done using the 

copy_from_user() system call. Data access is only available when all user-space memory is mapped 

in Kernel memory. 

 

1.4 THE LSM IMPLEMENTATION OVERVIEW 

 

The Linux Security Modules (LSM) implementation was designed to allow programmers to write 

modules which can be loaded and binded to special security hooks provided by the Kernel. This allows the 

creation of security enhancements in the Kernel layer just by loading one or more modules avoiding the 

trouble of patching the source and recompiling it all over again. 
 

1.4.1 Problem 

 

At first sight the LSM framework seems to be very useful and innovative, avoiding the patching of the 

Kernel source, as it was already said. But its implementation is so flawed and incomplete that simply fails 

to accomplish its main purposes. Some points of view: 
 
  

� It's not possible to make any security enhancements that are dependent of data structure 
restructuring 

 

So if you're coding a LSM and at the same time need to patch the Kernel to restructure data structures, 

there's no sense in coding the LSM. It makes much more sense to patch everything over the Kernel and 

recompile it, since you'll be doing it any way. 
 
  

� If you're using more than one security module, you can't guarantee their actions 
 
If a module returns immediately on a special security hook, there isn’t any type of recursion that will lead him 
into others. 
  
 

� There are lots of places in the Kernel that doesn’t have any special security hooks 
 

If you need to trig in any of these places you'll need to patch over the Kernel source. Once more, if you 

need to patch, recompile the Kernel and reboot, then it makes much more sense to patch everything, 

avoiding the complexity of the security module implementation.  
 

1.4.2 Solution 

 

To solve this problem, we’ve decided that the Linux Security Modules implementation isn’t suitable for 

the Linux Enhanced Security development. Therefore there will be no support or expected 

compatibility when enabling the Linux Security Modules feature within the Kernel. 
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1.5 DEVELOPMENT RULES 

 
To maintain code and functionality integrity, a couple of basic rules must be followed while developing new 

features for Linux Enhanced Security. This section will list them, divided by categories: 

 
 

� Indentation Rules 
 

• Code indentation should be similar to the used in the Kernel. 

 
 

� Variable/Constant Name Rules 
 

• Call Identifiers 
 

- A call is an identifier for a handler function. For instance, “LESEC_CHPOWN_CALL” 

is a reference to invoke the handler chpown_call() system call. 

 

- Call identifier names are always prefixed by the “LESEC_” word and suffixed by the 

“_CALL” word. The middle word uses capitalized characters and it specifies a 

feature. For instance “LESEC_CHPOWN_CALL”. 

 

• Op Identifiers 
 

- An op is an identifier for the operation that handler should perform. For instance, 

“CHPOWN_WRITE”. 

 
- Op identifier names are always prefixed by the feature’s name and suffixed by the 

operation’s name. For instance, “CHPOWN_WRITE”. 

 
- Defined operations are always handled inside the correspondent call’s handler 

function. 
 

• Calls, Operations, Flags and similar items should be always declared with enum. 

 
 

� Kernel-Land Developing Rules 
 

• For bit operations always use the Kernel bitops API. This API is defined at 

“asm/bitops.h” Linux header. 
 
• SMP Support 

 

- All features must be SMP safe. You can omit this if it’s clearly unnecessary. 
 

- When developing SMP safe code, always use the Kernel SMP API. 
 
 

� User-Land Developing Rules 
 

• User-space tools must always interact with the Linux Enhanced Security features, 

using the lesec() system call. 
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� General Developing Rules 
 

• Standard Issues 
 

- You should never break the standards. This can happen exceptionally and must 
always be well documented and should be always optional. 

 

• License Issues 
 

- Each file should have a license Header. You can find this header in “doc/” 

directory and never forget to update the file name and directory at the top of the 
header. 

 

1.6 TESTING LINUX ENHANCED SECURITY FEATURES 

 

Currently and due the lack of implemented features, only a few tests have been provided within the Linux 

Enhanced Security Testing Toolkit. With these tests you can test your system against almost all 

implemented security features. In the future a broader set of tests will be available. 
 
 

→ You can download the Linux Enhanced Security Testing Toolkit from our website at 

http://www.lesecurity.org. 
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CHAPTER 2 

MEMORY PROTECTIONS 

 

2 CHAPTER 2: MEMORY PROTECTIONS 

2.1 NON-EXECUTABLE MAPS 

 

The Non-Executable Maps implementations attempt to emulate trough software, the behaviour of the 

execution bit in the CPU’s pagination mechanism, in the architectures that don’t support it. Depending on 

the operating system’s segmentation design, the lack of the execution bit in the pagination mechanism, can 
lead a set of instructions to be executed over non-executable mapped memory regions. This happens 
because there is no physical way for the operation system to relate a non-executable map with a non-

executable page, therefore the CPU won’t be able to protect pages that are mapped has non-executable 

memory against code executions.  
 
These implementations can significantly slow a system’s performance if not taken seriously while in a 
developing stage. Normally these are very resource consuming, since they are always performing all sorts of 
checks, every time an application is interacting with certain memory regions. 
 
 
Nowadays concerns, while being a services provider, are not only in data integrity and trust trough security 
implementations. There is also a major concern in the availability and accessibility of a service using Quality 
of Service. This last item is invariably related with a system’s processing capacity, we can have an optimized 
link and a good traffic shaper, but what’s all that good for if we’re wasting our system’s resources with other 
unrelated tasks?  
 
We think that performance in security systems is very important and these should always try to minimize its 
impact, finding a good balance between them. Equally, we should never give away security for a highly 
performed system, we must be reasonable and choose an acceptable security/performance level. Mainly 

under this subject, the Linux Enhanced Security searches this balance and tries to offer reasonable 

solutions implementing different ideas for this problem. 
 

2.1.1 Non-Executable Maps Implementations 

 
There are many different techniques to inject and execute arbitrary code in a running process. If an attacker 
accomplishes to use one of these techniques to change a process’s execution flow, he won’t be able to 
change the system, if he isn’t able to execute system calls. 
 
While most implementations try to prevent any execution attempts in non-executable maps, this one has a 
little different approach. A process has the legitimacy to execute instructions in his address space, even if it 
his non-executable mapped memory region. This sounds a little controversy, but we’ll see that interrupts can 
helps us to prevent specific code executions from happen. 
 

While in user-mode the Kernel hasn’t any possible way to verify what a process is doing, but when an 

interrupt occurs (All-Interrupts Checking behaviour) or a system call (System Call Checking 

behaviour) is executed a context switch happens and the possibility to evaluate the process’s condition 

before the system call execution is gained. Already in kernel-mode the process is checked and if the 

CPU’s eip is over a non-executable map region, he’s forced to terminate. Disabling the possibility to 

execute system calls under these conditions prevent almost all sorts of attacks by denying any system 
privilege and resource requests. 
 

These checks can be triggered differently using two available behaviours: All-Interrupts Checking 

behaviour and System Call Checking behaviour. 
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While using the All-Interrupts Checking behaviour a non-executable map is executable until an 

interrupt occurs. This means that every time an interrupt occurs, the Kernel verifies if the process has the 

acceptable conditions to continue its execution. This behaviour is purely academic and has some 
disadvantages: 
 

• High resource consuming implementation, since interrupts are always happening. 

• Can terminate legit code execution, for instance, GCC trampolines. 

 
  

While using the System Call Checking behaviour a non-executable map is executable until a system 

call is executed. This means that only when a context switch is triggered by a system call, the Kernel 

verifies if the process has the acceptable conditions to continue its execution. This is the most advisable 
behaviour since it has some valuable advantages: 
 

• Very low resource consuming. 

• Allow legit code execution, for instance, GCC trampoline compatibility. 

 
 
Anyway, these are not full proof solutions and there are a few situations where they fail to accomplish 
security: 

• In the System Call Checking behaviour it’s possible to create a loop that will 

starve the CPU’s resources. But this situation is also valid in a local environment, where 

users are allowed to execute their own code. So, this is a job for a resources limit tool and 
not a non-executable map implementation. 

 

• Under certain specific circumstances, it’s possible to avoid (→ see section 2.1.3.8) 

both behaviours. But, it’s also easier to implement a legit return into libc attack. This can 

be prevented using a GCC Stackguard like patch. 

 
 
As we’ve said, covering these issues here, would lead to a very slow implementation and since there are 
alternative solutions that can be used to complement it without harming the system’s performance, we’ve 
decided to implement it this way.  
 
 

→ A Randomized Stack protection may difficult issues like these from happening, please see 

section 2.2. 

 

→ A StackGuard like protection can successfully prevent stack-smash attacks. Please see in 

section 2.1.3.2 why these mechanisms can be also a good security solution in complement 

with kernel-side protections.  

 
 
If you still don't know which behaviour you should choose for your system please see section 2.1.3 for more 
information. 
 
 

Related Sections 
 

2.1.3.2 The GCC Executable Stacks and StackGuard 

2.1.3.8 Avoiding the Non-Executable Maps Protection 

2.2 Randomized Stack  
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2.1.1.1 i386 Compatible Processor Behaviours 

 

In section 2.1.1 we’ve overviewed how these behaviours worked. In this section we’ll try to go further in 

explanations being a little more technical. 
    

These behaviours end up being very simple, but let us explain first how the Kernel handles interrupts. 

 

There are a few interrupts that forces a context switch from user-space to kernel-space, for instance, a 

time interrupt triggered by the real time clock or a task-switch interrupt triggered by a system call. 

Whenever one of these interrupts occurs the Kernel starts executing the entry.S code. The entry.S 

code is a Kernel section that has various handlers to redirect the Kernel’s execution flow to a specific 

section, depending on the context that has switched into kernel-space. 

 

If we place code before the system_call checks in the entry.S code, it will be executed every time a 

context switch interrupt occurs; this is the All-Interrupts Checking behaviour.  

 
 
Diagram for the All-Interrupts Checking behaviour 
 
 

 
 
 
In the other hand, if we place code along with the system call checks, it will be executed only when a system 

call is executed; this is the System Call Checking behaviour. 

 
 
Diagram for the System Call Checking behaviour 
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It’s always preformed the same check to validate the current task, either when an interrupt occurs, All-

Interrupts behaviour, or either when a task-switch is triggered by system call, System Call 

Checking behaviour. Validating a process consists only in verifying which map the CPU’s eip is. Then, 

if the “VM_EXEC” flag on that map is unset, a “SIGSEGV” is sent to the current process forcing its 

termination. 
 
 
Although it isn’t a full proof protection, it can still be very successful while stopping almost all attacks and has 
an incredible performance. 
 
 

Related Sections 
 

2.1.1 Non-Executable Maps Implementations 

 

2.1.1.2 The Future 

 
We’re not sure of the actual usefulness in performing these checks each time an interrupt occurs with the 

All-Interrupts Checking behaviour. The time that a process can take in a tick depends on the 

processor. Execution times on a 80386 processor are smaller than on a PIV processor. A PIV processor is 

able to execute much more instructions per tick, making this behaviour faster but less interactive with the 

routine. In the other hand a 80386 processor will interact much more times with the routine, slowing down 

the scheduling process.  
 
While a final version hasn’t been release, we’ll decide what we’ll do with this protection. Probably we’ll only 

trig on system calls, leaving the All-Interrupts Checking behaviour behind.   

  

Aside from our decision, we maintain both behaviours for you to choose when configuring the Kernel. 

 

2.1.2 The modify_ldt() Compatibility (i386 only) 

 
Some applications might need some control over the memory segmentation of their process space, this is 
common between operating systems emulators that need to reproduce that specific system’s segmentation 

design. The Linux Kernel allow the applications to define new segments trough modify_ldt() system 

call. 
 

Since Non-Executable Maps would interfere with these applications, a modify_ldt() compatibility was 

also implemented. With this compatibility, the applications running under these conditions will still be able to 
have their maps verified without having problems.  
 

2.1.2.1 How Does modify_ldt() Compatibility Works 

 

When a process executes modify_ldt() to define new segments, the Kernel will assign a new Local 

Descriptor Table (LDT) and obviously, it will no longer share its own with other processes. 

  
According to IA-32 Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture, Section 3, 

Page 19: "(...) The following default segment selections cannot be overridden: 

Instruction fetches must be made from the code segment. (...)", so, when calculating 

the eip position on the Linear Address Space, we only need to take care with the Code Segment 

Selector (CSS) because we won't be able to call a far pointer using any of the other segment selectors 

(SS, DS, ES, FS or GS). 
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When a process performs a far call to execute instructions on a newly created segment, the eip won't 

receive a Linear Address, instead it will receive an offset value for that segment starting at address 

zero. While we’re checking if the eip position is within map boundaries, we'll add the base address that’s 

inside the Segment Descriptor defining the actual code segment. We can identify this Segment 

Descriptor by reading the actual Code Segment (CS) index that’s used by the far pointer. This check is 

only performed if the current CS and the original CS defined by the Kernel under Current Privilege 

Level (CPL) 3, don't match up. 

 

2.1.3 Warnings and Suggestions 

 
Before starting to choose your Linux Enhanced Security options, you should be aware of some 

important details that must be taken seriously, jeopardizing your system’s security if you do not do so. 
 

2.1.3.1 Selecting A Non-Executable Maps Behaviour 

 

As we said above in section 2.1.1.2 the All-Interrupts Checking behaviour doesn’t make 

sense on slower processors so if your machine has a low processing capacity you probably want to check 

maps only when a system call is executed. The only advantage in choosing the All-Interrupts 

Checking behaviour is that a process won't loop for long if there's arbitrary code forcing it to do so. 

Although if this happens, no other resources will be compromised except CPU time.  

 
 

→ If you'd like to know more about the incompatibilities of the All-Interrupts Checking 

behaviour, please refer to section 2.1.3.3. 

 
 

Related Sections 
 

2.1.1.2 The Future 

2.1.3.3 Trampolines Compatibility 

 

2.1.3.2 The GCC Executable Stacks and StackGuard 

 

Since the first appearance of the newly AMD processors with the executable bit support in the pagination 

mechanism that the GNU Compiler Collection (GCC) started to force executable stack maps in the 

early 3.3.x releases. This decision was taken by the GCC developer team due the fact that certain code 

wasn’t running in these processors anymore. This was happening because the enforcement of the non-

executable pages in the processor’s pagination mechanism was faulting the GCC’s nested function 

handlers, often called trampolines. 

 
Trampolines are small pieces of code generated on-the-fly that are placed on the process’s stack map and 
then executed. If the stack map is non-executable, then a process that uses nested functions will simply fail 

its execution and most probably will get killed with a Page Fault. 

 

This seems a little controversial, finally that we have an execution bit support in x86 architectures that 

solves the non-executable maps problem, the GCC now introduces a technical solution that is not compatible 

and deprecates this support. However, the GCC developer team plans to support natively in future releases 

the StackGuard patch has a solution for this problem. Obviously this is a sloppy solution covering the real 

problem. 
 

The StackGuard project is a GCC patch that prevents stack-smashing attacks. Placing a token (canary) 

before the return address it’s possible to know if it has been modified, checking if the token has been 

also modified. Normally this token can be either a random, null or terminate value. This solution doesn’t 
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prevent against stack writings, it only prevents against execution flow changes, by manipulating the return 

address value. 

 

The StackGuard protection doesn’t deprecate the Non-Executable Maps protection since it doesn’t 

prevent against heap attacks.  
 

When using the All-Interrupts Checking behaviour only binaries compiled with GCC versions prior 

to 3.3.0 will be stack-smash safe and also trampoline incompatible (→ see section 2.1.3.3). 

When using the System Call Checking behaviour there will be a new option that forces a check in 

executable stack maps too. 
 
 

Related Sections 
 

2.1.3.3 Trampolines Compatibility  

 

2.1.3.3 Trampolines Compatibility 

 
As explained above (→ see section 2.1.3.2), trampolines are small pieces of code generated on-

the-fly that are placed on the process’s stack map and then executed. Trampolines only need to handle 

addressing values and execute a call instruction, excluding system call execution. Therefore, if we’re only 

checking the eip value each time a system call is executed (System Call Checking behaviour), 

there won’t be any trampoline incompatibilities. However, this doesn’t happen when checking the eip 

value each time an interrupt occurs (All-Interrupts Checking behaviour). If an interrupt occurs 

while a trampoline is being executed, the eip will be over a non-executable map and the process will be 

forced to terminate. This last behaviour is not trampoline compatible, turning a process’s execution 
unpredictable.  
 
 

Related Sections 
 

2.1.3.2 The GCC Executable Stacks and StackGuard 

 

2.1.3.4 When Should modify_ldt() Compatibility Be Used 

 

You should use this option if you’re working with programs that depends the modify_ldt() system call to 

work properly. This should be the case of some emulators or programs that where designed to work on a 
specific architecture. If you’re not one of these cases, unless you really need it for any other reason, you can 
leave this option disabled. 
 

2.1.3.5 The AMD64 Architecture 

 
According to AMD64 Architecture Programmer's Manual, Volume 2, System Programming, revision 3.09, 

Chapter 5, Page Translation and Protection, Page 174: "(...) The AMD64 architecture 
introduces a third form of protection that prevents software from attempting to 

execute data pages as instructions. (...)". If you’re using this processor you won't need to 

use Non-Executable Maps protection. 
 
 

→ Please be warned for the GCC executable stack implementation in section 2.1.3.2. 

 
 

Related Sections 
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2.1.3.2 The GCC Executable Stacks and StackGuard 

 

2.1.3.6 The Intel Itanium 2 Architecture 

 

This architecture contains a Non-eXecutable (NX) bit on page permissions which enables non-executable 

pages. If you’re using this processor you won't need to use Non-Executable Maps protection. 

 
 

→ Please be warned for the GCC executable stack implementation in section 2.1.3.2. 

 
 

Related Sections 
 

2.1.3.2 The GCC Executable Stacks and StackGuard 

 

2.1.3.7 The Intel LaGrande Technology (LT) 

 

This technology will be implemented on future PIV processors (as well has the VanderPool 

Technology). The LT Technology supports many new hardware security features including the NX bit on 

page permissions (→ see section 2.1.3.6). If you’re using a processor with this technology you won't 

need to use Non-Executable Maps protection. 

 
 

→ Please be warned for the GCC executable stack implementation in section 2.1.3.2. 

 
 

Related Sections 
 

2.1.3.2 The GCC Executable Stacks and StackGuard 

 

2.1.3.8 Avoiding the Non-Executable Maps Protection 

 

The Non-Executable Maps protection performs only one check to see if the eip is over a non-

executable map region. Under certain conditions it’s possible to bypass it jumping to an executable map 
before the actual context switch happens. 
 

A system call context switch happens whenever an interrupt 0x80 is executed. The Kernel will then load 

the specific system call arguments directly from the CPU’s registers.  

 

If we can control the process’s stack we’re able to execute instructions to load the CPU’s registers with a 

specific system call’s argument values. Then, if we perform a far jump to an interrupt 0x80 instruction 

already existent in a code map, the Non-Executable Maps protection will see the eip over a legit 

executable map allowing the process execution. It’s very probable to find system call interrupts in a code 

map since a process can’t do much without system calls and these can be often found within the libc code. 

Actually this is most similar to return into libc attacks but with some disadvantages that difficult the 

whole process. Since you’re performing a far jump into a read-only map, you won’t be able to control the 

execution flow when the system call returns, almost certainly leading to a process crash. Although we’re 

limited to only one system call, if the process has real uid 0, executing the execve() system call is 

enough to compromise the system, but in most cases we’ll need to set*id() first. Avoiding this protection 

can be simpler if we use a return into libc technique which doesn’t have these disadvantages and 

was never meant to be covered by this protection.  
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Diagram for the Non-Executable Maps Bypass (reproduces a stack-smash attack) 
 
 

 
 

As we’ve said in the beginning of this chapter (→ see section 2.1) we invest in solutions that offer a 

good balance between security and performance. This is a really fast implementation that gives not the best 
but a very acceptable security level, therefore we’ve decided to leave it this way instead of loosing 
performance with a more complex solution. 

Data Segment 
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... 
int $0x80 

... 

Stack 

... 
mov $arg3, %edx 
mov $arg2, %ecx 
mov $arg1, %ebx 
mov $valid_syscall_id, %eax 
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... 
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We’re already working on a GCC based protection to complement this protection without loosing performance 

and provide a wider secure solution against these issues. 
 
 

→ We also warn you for the use of a Randomized Stack protection altogether with this protection 
 

 
Related Sections 
 

2.1 Non-Executable Maps 

2.2 Randomized Stack 

 

2.2 RANDOMIZED STACK 

 
Stack randomization techniques appeared has an effective solution against the well known stack-

smashing attacks. Although it self doesn’t serve as a full proof security replacement, its simplicity and 

effeteness made it a big trump in nowadays security schemes. 
 

2.2.1 How Does Randomized Stack Works 

 
Each time a binary is executed, multiple code and data maps are requested to the operating system. One of 
them is an expand-down data map, also known as stack, which will be placed at the top of the process's 
memory. Later, a random value is subtracted from the pointer that points to the top of the process’s memory, 
this way selecting a random memory region. A different random region is selected between executions, 

statistically reducing the chances, closer to 0%, that a stack-smash attack has to be successful. 

 

2.2.2 Randomized Stack and StackGuard 

 

There are many implementations that prevent stack-smash attacks but all of them have their pros and 

cons. Sometimes we need to use more than one protection or choose one that best fits our system in order 
to increase effeteness in preventing these attacks.  
 

For instance, when using the StackGuard with GCC, the use of Randomized Stack protection may 

be omitted but the StackGuard protection, in some cases, can be avoidable with some exploiting 

techniques that are based on a previous stack analysis to retrieve the canary value and craft it into the 

string which contains the shellcode and return address value. This kind of exploiting is generally used 

when using random canaries, because these are generated with a random value XORed along with the 

return address of the current stack frame.  

 

If security is really important on your system, then you should use StackGuard and Randomized Stack 

protection. 

 

2.2.3 The Future 

 
With the actual evolution of compile time security enhancements and processor protections, this feature may 

become deprecated soon as well as the Non-Executable Maps protection. But for now, this 

enhancement it’s justifiable.   
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2.3 VMA PROTECTIONS 

 
Lately we’ve been assisting the uncovering of multiple flaws in the Linux Kernel that could lead into a 

locally compromised system. Most of these flaws were in boundary checks preformed on values passed to 

system calls. Good examples of this flaws appeared in munmap(), mremap() and brk() system calls that 

allowed an user-space process to map Kernel memory as a consequence. Once this memory was 

mapped in user-space, the only thing left to do was to change specific values in specific Kernel 

structures, the trickiest part, but how this was accomplished is another story. 
 

2.3.1 How Does VMA Protections Works 

 
Every task has a region in its address space that is reserved to Kernel data. This region is between 

0xc0000000 and 0xffffffff, therefore Kernel memory will always be mapped here. Once we already 

know that the address space reserved to the Kernel is above the 3GB, we also know that the task’s data 

must be under the 3GB. The Linux Kernel has the “TASK_SIZE” macro that we can use to know 

exactly where the task’s memory ends. 
 

The main idea for this protection mechanism is to check, every time the Kernel is returning into user-

space after a system call, if there is any memory mapped above the “TASK_SIZE” value. If this happens, 

we know that kernel memory is mapped, therefore a SIGSEGV is sent, forcing the task to terminate. 

 
  
Diagram for the VMA Protections 
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This protection is trivial to implement in the Linux Kernel 2.4.x series, since there are no mapped 

regions above “TASK_SIZE” available to user-space. However, in the newest Linux Kernel 2.6.x 

series, every task has a memory region above “TASK_SIZE” mapped from 0xffffe000 to 0xfffff000 

(at least on i386 architectures). This region is used by the Dynamic Shared Object (DSO) map (→ see 

section 2.3.2.4) and can be ignored while performing normal map checks without great impact on 

performance (→ see section 2.3.2.2). Since maps cannot be overlapped by other maps, it's safe to 

ignore these reserved mapped regions. 
 
 

Related Sections 
 

2.3.2.2 The Impact on Performance 

2.3.2.4 Dynamic Shared Objects Map 

 

2.3.2 Warnings and Suggestions 

 
Before starting to choose your Linux Enhanced Security options, you should be aware of some 

important details that must be taken seriously, jeopardizing your system’s security if you do not do so. 
 

2.3.2.1 When Should VMA Protections Be Used 

 

You may find this a little paranoid, however, security holes like those present in munmap(), mremap() and 

brk(), may still happen. We can never be too sure about the system calls safety therefore, if security is 

most important to your system, it’s advisable to select this option. 
 

2.3.2.2 The Impact on Performance 

 
If you select this option, the impact on the performance of your system will be very low, since the algorithm 

used to perform the VMA checks is optimized with caching mechanisms that speeds up the entire process. 

The first time that VMA pools are verified, the stack map pointer is cached and since this map is always the 

last one before reaching “TASK_SIZE”, future verifications use directly the cached pointer, ignoring all 

maps below. 
 

2.3.2.3 The Persistent Kernel Map (PK Map) 
 

The Persistent Kernel Map (PK Map) is a memory pool that contains, for short periods of time, Page 

Table Entries (PTE) that are used to map High Memory Region pages into Normal Memory 

Region and vice-versa. This map behaves like a memory bouncer. 

 

This memory region isn’t new in Linux Kernel 2.6.x series and exists in older Kernel versions since 

High Memory Management support first appeared. The difference between older and current series is the 

size of this map that isn’t constant anymore and has now a variable range between “PKMAP_BASE” and 

“FIXADDR_SIZE”. 

 

For the x86 compatible architectures, when the number of CPUs is less than or equal to 32 units, the 

“PKMAP_BASE” constant holds the 0xff800000 value and the “FIXADDR_SIZE” is a compile time 

defined constant. This constant value depends on the Kernel configuration, therefore we can only say that 

PKMap begins on “PKMAP_BASE” and ends on “FIXADDR_SIZE”. 
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2.3.2.4 Dynamic Shared Objects Map (DSO Map) 

 

The Dynamic Shared Objects Map (DSO Map) was first introduced in the recent Linux Kernel 

2.6.x series and it’s used to load an ELF binary containing, has its name says, Dynamic Shared 

Objects. These objects are used to speed up system calls, sigtrampoline and sigreturn purposes. 

 

For the x86 compatible architectures, the DSOs are called Virtual System Calls and for IA-64 these 

are called Fast System Calls, because system call's virtualization isn’t supported by this architecture. 

 

→ See “linux/Documentation/ia64/fsys.txt” for more information about Fast System 

Calls. 

 

2.4 DISABLED /DEV/MEM AND /DEV/KMEM 

 

Nowadays, many backdoor systems are installed into the kernel space directly through “/dev/mem” or 

“/dev/kmem” devices even if the Kernel hasn’t compiled the module support. The only way to prevent 

this kind of backdoors is preventing those devices from being opened. 
 

2.4.1 How Does Disable /dev/mem and /dev/kmem Work 

 
These are character devices that are handled by special routines called, device operations. There are many 

operations available to character devices, but the most common amongst them are open(), write(), 

read() and close(). Disabling the open() operation for these devices will leave them inaccessible and 

any open() attempt on the device will return an “EPERM”.  

2.4.2 Conclusion 

 

Since it’s not possible to open these devices, there's no way to install backdoor code into the Kernel 

space. Although, as a side effect, loading Kernel modules will be impossible, neither running Klog nor X 

Server. 

 
Related Sections 
 

2.4.3.1 Incompatibility with Loadable Kernel Modules (LKMs) 

2.4.3.2 Incompatibility with Kernel Logger Daemon (klogd) 

2.4.3.3 Incompatiblity with X Servers 

 

2.4.3 Warnings and Suggestions 

 
Before starting to choose your Linux Enhanced Security options, you should be aware of some important 
details that must be taken seriously, jeopardizing your system’s security if you do not do so. 
 

2.4.3.1 Incompatibility with Loadable Kernel Modules (LKMs) 

 

The Loadable Kernel Modules (LKMs) are loaded trough “/dev/kmem” using a set of user-land 

tools called modutils. If this device is disabled, there's no way to load a module. 
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2.4.3.2 Incompatibility with Kernel Logger Daemon (klogd) 

 

The Kernel Logger Daemon is used to log events generated by the Kernel and depends “/dev/kmem” 

to work properly. Therefore, if this device is disabled, klogd will fail its initialization. 

 

2.4.3.3 Incompatibility with X Servers 

 

Some X Servers like XOrg and XFree86, use the “/dev/kmem” to access directly to the Kernel 

memory. If this device is disabled then X Servers like these won't be able to run. 

 

2.4.3.4 How Does Backdoors Works 

 

There are multiple ways to load backdoor code into Kernel space, but they will always need to open 

“/dev/mem” or “/dev/kmem” to access the Kernel memory. This happens because an attacker needs to 

know the exact location of some important Kernel pointers in order to change and point them to the 

backdoor code. Loading code into Kernel space can be a simple process when you have modutils, but 

very painful when these aren’t supported, since writing portable ways to load it in different systems is always 
a difficult to accomplish. Without these devices, such thing isn’t possible anymore.  
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CHAPTER 3 

PROCESS PROTECTIONS 

 

3 CHAPTER 3: PROCESS PROTECTIONS 

3.1 RANDOMIZED PIDS 

 

There are flaws that can be exploited by guessing the pid value of a process that hasn’t been yet launched. 

This type of attack is based on the sequential pid attribution. The pid randomization comes has a solution 

for this problem. 
 

3.1.1 How Does Randomized PIDs Works 

 

When a new process is created, the Kernel attributes a unique pid that will distinct it from all the others. 

Normally the pid value is attributed adding 1 to the previous attributed pid, but when randomization is 

enabled this will be randomly generated value between 0x300 and 0x7fff. Case happens to be generated 

an already attributed pid then the algorithm will enter a loop, adding 1 to the randomly generated pid until 

a free one is found. 
 

3.1.2 Conclusion 

 

If you use pid randomization together with Proc File System Protections (→ see section 4.1), 

will be almost impossible to retrieve the pid of a process.  

 
 

Related Sections 
 

4.1 Proc File System Protections 

 

3.2 HIDDEN MAPS 

 

There are attacks that need to consult “/proc/<pid>/maps” to access a task’s map information and 

locate pointers references needed to successfully exploit an existent flaw. Since this file is only used 
information/debugging issues and the current task doesn’t depend from it, it’s safe to omit all map 
information in it. 
 

3.2.1 How Does Hidden Maps Works 

  

Every time a read operation is called for this file, the Proc file system handlers are modified in such way that 

instead of returning real VMA pointer information, each map will have a null pointer has a reference. 

 

3.2.2 Conclusion 

 
Placing null pointers in each map reference, there's no way for an attacker to know the process's memory 

map regions using “/proc/<pid>/maps”. 
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CHAPTER 4 

FILE SYSTEM PROTECTIONS 

 

4 CHAPTER 4: FILE SYSTEM PROTECTIONS 

4.1 PROC FILE SYSTEM PROTECTIONS 

 

The Proc file system gathers various files with constantly updated system and process information. In 

systems that have hostile local environments, for instance shell providers, it may be useful to deny or restrict 

access to this information. The Proc File System Protections enable you to select different access 

restrictions to system and process information trough the Proc file system. 

 
 

→ See Appendix A for a complete reference list of options and files where these restrictions are 

applied. 

 

4.1.1 How Does Proc File System Protections Works 

 

For system files that lay at the Proc’s root directory the only option available is enable or disable and for 

the process’s information you can select between user and group level restrictions. 

 
  

→ See Appendix A for a complete reference of the modified permissions and disabled files. 

 

4.1.2 Conclusion 

 
There is certain information that isn’t supposed to be seen by users on a system. Occulting important 
information may difficult the disclosure or even exploit process of a certain security flaw. 
 

Has an alternative to the system files protection you can also change their permission using chmod() to 

restrict access to the system users. However there are some files that shouldn’t be seen, not only by users, 

but even by super-user. For instance, kallsyms and kcore files could be used by a successful attacker 

to retrieve sensitive information as memory offsets and user passwords respectively. Therefore, we advise 
you to disable of these files. 



 

 

Administration ToolsAdministration ToolsAdministration ToolsAdministration Tools    
  5 



ADMINISTRATION TOOLS 

 

_______________________________________________________________________________________________________ 

Linux Enhanced Security 
5-1 

CHAPTER 5 

ADMINISTRATION TOOLS 

 

5 CHAPTER 5: ADMINISTRATION TOOLS 

5.1 CHANGE PROCESS OWNER (CHPOWN) 

 
Sometimes there are application daemons that only need certain higher privileges while they’re starting up. 

For instance, if you’re binding Apache into privileged service ports (<1024), you’ll need to run it with 

super-user privileges, otherwise the bind() system call will return an “EPERM”. However after this 

initialization, it’s very possible that super-user privileges won’t be needed anymore, and if they are, you 

can easily create an environment where they won’t.  
 

You may think that Apache isn’t a very good example because, if it’s well configured, its children processes, 

which actually process the user input data, are running with local-user privileges and at most 

compromising a local user account. Well, that’s not a wised thought, since history tells us that many shared 

memory flaws allowed, what appeared a local-user compromise, to be a super-user compromise, 

executing code in a shared memory space with super-user privileges. Like Apache, many other 

applications will have this sort of security flaws.  
 
As we’ve seen, this can be a security problem and we should never trust the application’s privilege 
separation mechanism, in the worst case scenario this should be always guaranteed by the operating 
system.  
 
 

→ As a solution for these issues, chpown enables you to change on-the-fly a process real user and 

group. 
 

5.1.1 How Does Chpown Works  

 

Whenever chpown is executed to change a process owner, it will interact with kernel-space, trough the 

lesec() system call, and update the process’s task structure fields; suid, fsuid, rgid, egid, sgid and 

fsgid,  to the requested owner privileges. If chpown has requested changes to an invalid pid value, the 

lesec() system call returns “EINVAL”. 

 
 

→ See the Appendix B for the chpown manual. 

 

5.1.2 Conclusion 

 

Having services running with local-user privileges reduces the chances of a compromised system and at 

most you’ll have a compromised service. 
 
Sometimes an attacker would use signals to kill a service, for instance if an apache process child is running 

with the same parent uid, he will be able to kill it. However, Signal Protections (sigp) should work for 

theses cases (→ see section 5.2). 

 
 

Related Sections 
 

5.2 Signal Protection (SIGP) 
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5.2 SIGNAL PROTECTION (SIGP) 

 
If an attacker can successfully exploit a flaw present in a child process and if it’s running with the same 
parent privileges, he’s able to send signals to the parent process. For instance, he could use this feature to 

send a kill signal and force the parent process to terminate execution. With Signal Protection you can 

deny certain signals from being delivered to a given process, even the kill signal. 
 

5.2.1 How Does Sigp Works 

 
Within the Kernel each task is discriminated by a task structure. Each task structure has a special 32 bit 

mask that identifies at most 32 inhibit signals. When sigp is executed, it will interact with kernel-space, 

trough the lesec() system call, and mask set/unset the correspondent bit. Whenever the Kernel delivers 

a signal to a process it will then check its bit mask first and if the correspondent bit is cleared, the signal is 
delivered, otherwise it is discarded.  
 
 

→ See the Appendix C for the chpown manual. 

 

5.2.2 Conclusion 

 
Inhibiting certain signals may difficult attacks that depends this feature to work properly, fortifying your 

services availability and reducing the possibilities of successful Denial of Service attacks only to client 

instances. 
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AUDIT OPTIONS 

 

6 CHAPTER 6: AUDIT OPTIONS 

6.1 LOG LINUX ENHANCED SECURITY KERNEL EVENTS 

 

The Audit Options goal is to log system’s relevant information. This feature isn’t yet developed and 

presently you can only log certain features. In future releases this option should be vastly explored in order 
to offer a power set of system crucial information. 
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PROC FILESYSTEM RESTRICTED FILES 

 
APPENDIX A: PROC FILESYSTEM RESTRICTED FILES 
 
OPTIONS 
 
Restriction options for accessing “/proc/pid/” data: 

 
Option Comment 

 
LESEC_PROC_FS_PROT_OPT_USR Restrict access on a user basis 
LESEC_PROC_FS_PROT_OPT_GRP Restrict access on a group basis 

 
 

Default option is “LESEC_PROC_FS_PROT_OPT_USR”. 

 
 

CONFIGURATION OPTIONS 
 

Directory “/proc/<pid>” restriction modes for “LESEC_PROC_FS_PROT_OPT_PID” option: 

 
Mode 
 

Option 

S_IFDIR|S_IRUSR|S_IXUSR LESEC_PROC_FS_PROT_OPT_USR 
S_IFDIR|S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP LESEC_PROC_FS_PROT_OPT_GRP 
 

 

Options to disable correspondent “/proc” files: 
              

Option 
 

File 
 

LESEC_PROC_FS_PROT_MEMINFO /proc/meminfo 
LESEC_PROC_FS_PROT_CPUINFO /proc/cpuinfo  
LESEC_PROC_FS_PROT_HW /proc/hardware 
LESEC_PROC_FS_PROT_STRAM /proc/stram  
LESEC_PROC_FS_PROT_DEV /proc/devices  
LESEC_PROC_FS_PROT_FS /proc/filesystems  
LESEC_PROC_FS_PROT_CMDLINE /proc/cmdline  
LESEC_PROC_FS_PROT_LOCKS /proc/locks  
LESEC_PROC_FS_PROT_XDOM /proc/execdomains 
LESEC_PROC_FS_PROT_PART /proc/partitions 
LESEC_PROC_FS_PROT_STAT /proc/stat 
LESEC_PROC_FS_PROT_DISKSTAT /proc/diskstats 
LESEC_PROC_FS_PROT_INT /proc/interrupts 
LESEC_PROC_FS_PROT_MODULES /proc/modules  
LESEC_PROC_FS_PROT_SSTAT /proc/schedstat 
LESEC_PROC_FS_PROT_VMSTAT /proc/vmstat 
LESEC_PROC_FS_PROT_BUDINFO /proc/buddyinfo 
LESEC_PROC_FS_PROT_KCORE /proc/kcore 
LESEC_PROC_FS_PROT_KASYMS /proc/kallsyms 
        



 

 

Administration Tools: Administration Tools: Administration Tools: Administration Tools: 

ChpownChpownChpownChpown    B 



ADMINISTRATION TOOLS: CHPOWN 

_______________________________________________________________________________________________________ 

Linux Enhanced Security 
I 

APPENDIX B 

ADMINISTRATION TOOLS: CHPOWN 

 
APPENDIX B: CHPOWN 
 
Usage 
 

chpown <user>[:<group>] <pid> 

 
 
Description 
 

Change the user and/or group ownership for a given process. 
 
 

Options 
 

Argument 
 

Description 
 

user The new user-name or the uid value that will be set for the 
process. 
 

group The new group-name or gid value that will be set for the process. 
This argument is optional. 
 

pid The process id value. 

 
 
Example 
 

# chpown apache:apache 1234 

 

This will modify the process’s user/group, identified by 2321, to user and group apache. 

 
 
 
PROTOCOL SPECIFICATION 
 
Call identifier 
 

LESEC_CHPOWN_CALL 
 

 
Operation identifiers 
 

CHPOWN_WRITE 
 
 
Data specification 
 

Value 
 

Size (bits) Description 
 

uid 32 Specifies the uid value 
gid 32 Specifies the gid value 
pid 16 Specifies the pid value 

 
 Data alignment of 64 bits 
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ADMINISTRATION TOOLS: SIGP 

 
APPENDIX C: SIGP 
 
Usage 
 

sigp <option> [args] 
 

 
Description 
 

Inhibit certain signals in a process.  
 
 

Options 
 
          

Arguments 
 

Description 
 

-s <pid> +-
signal [... 
+-signal] 

Set/unset a list of inhibited signals in a process 
identified by the argument pid. To set you must concatenate 
the character ‘+’ and to unset the character ‘-‘. 
 

-p <pid> Prints the list for inhibited signals for the process 
identified by pid. 
 

-l Prints the list of valid signals. 
 

-h Prints the help output. 
 

 
 
Example 
 

# sigp -s 1234 +SIGKILL +SIGSEGV -SIGTERM 

 

This will set inhibited signals “SIGKILL”, “SIGSEGV” and unset “SIGTERM” for the process with 

pid 1234. 

 
 
 
PROTOCOL SPECIFICATION 
 
Call identifier 
 

LESEC_SIGP_CALL 

 
 
Operation identifiers 
 

SIGP_WRITE 
SIGP_READ 

 
 
Data specification 
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Value 
 

Size (bits) Description 
 

isig_set 32 Set signals mask 
isig_unset 32 unset signals mask 
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http://www.cse.ogi.edu/DISC/projects/immunix/StackGuard/mechanism.html 

 



 

  

CreditsCreditsCreditsCredits        



CREDITS 

_______________________________________________________________________________________________________ 

Linux Enhanced Security 
I 

CREDITS 

 
CREDITS 
 
Has you can imagine, this project demands a lot of work and writing good documentation it’s not an easy 
task. Therefore all contributions have proven themselves to be a very important issue while writing this 
manual.  
 
We’d like to dedicate this manual section to the people that have contributed significantly with text and 
corrections. Here is a list of them: 
 

• João Santos 

• Bruno Vieira 

• Luis Pedrosa 
 

 


