

(rev 20040103)

Linux Enhanced Linux Enhanced Linux Enhanced Linux Enhanced SSSSecurityecurityecurityecurity

Reference ManualReference ManualReference ManualReference Manual

v0.2v0.2v0.2v0.2

By: Pedro Hortas & Artur D'Assumpção

TABLE OF CONTENTS

Linux Enhanced Security
I

TABLE OF CONTENTS

1 CHAPTER 1: THE LINUX ENHANCED SECURITY OVERVIEW..1-1

1.1 THE LINUX ENHANCED SECURITY PROJECT ..1-1

1.2 ARCHITECTURE SUPPORT..1-1
1.2.1 Supported Architectures and Architecture Dependent Features ..1-1

1.2.1.1 x86 Architecture (32 bits) (i386) ...1-1
1.2.1.2 IA-64 Architecture...1-1
1.2.1.3 x86-64 Architecture (EM64T based chipsets) ..1-1
1.2.1.4 Sparc Architecture..1-1
1.2.1.5 Alpha Architecture ..1-1
1.2.1.6 PPC Architecture..1-2

1.2.2 SMP Support...1-2
1.2.2.1 SMP Safety ..1-2

1.3 THE LINUX ENHANCED SECURITY INTERNALS...1-2
1.3.1 The lesec() System Call..1-2
1.3.2 Accessing Data Structures..1-3

1.4 THE LSM IMPLEMENTATION OVERVIEW...1-3
1.4.1 Problem...1-3
1.4.2 Solution ...1-3

1.5 DEVELOPMENT RULES..1-4

1.6 TESTING LINUX ENHANCED SECURITY FEATURES..1-5

2 CHAPTER 2: MEMORY PROTECTIONS...2-1

2.1 NON-EXECUTABLE MAPS ...2-1
2.1.1 Non-Executable Maps Implementations ...2-1

2.1.1.1 i386 Compatible Processor Behaviours ...2-3
2.1.1.2 The Future..2-4

2.1.2 The modify_ldt() Compatibility (i386 only) ..2-4
2.1.2.1 How Does modify_ldt() Compatibility Works..2-4

2.1.3 Warnings and Suggestions ...2-5
2.1.3.1 Selecting A Non-Executable Maps Behaviour ...2-5
2.1.3.2 The GCC Executable Stacks and StackGuard ..2-5
2.1.3.3 Trampolines Compatibility..2-6
2.1.3.4 When Should modify_ldt() Compatibility Be Used ...2-6
2.1.3.5 The AMD64 Architecture ..2-6
2.1.3.6 The Intel Itanium 2 Architecture ...2-7
2.1.3.7 The Intel LaGrande Technology (LT) ...2-7
2.1.3.8 Avoiding the Non-Executable Maps Protection..2-7

2.2 RANDOMIZED STACK...2-9
2.2.1 How Does Randomized Stack Works...2-9
2.2.2 Randomized Stack and StackGuard...2-9
2.2.3 The Future...2-9

2.3 VMA PROTECTIONS ...2-10
2.3.1 How Does VMA Protections Works ..2-10
2.3.2 Warnings and Suggestions ...2-11

2.3.2.1 When Should VMA Protections Be Used...2-11
2.3.2.2 The Impact on Performance...2-11
2.3.2.3 The Persistent Kernel Map (PK Map) ..2-11

TABLE OF CONTENTS

Linux Enhanced Security
II

2.3.2.4 Dynamic Shared Objects Map (DSO Map) ..2-12

2.4 DISABLED /DEV/MEM AND /DEV/KMEM...2-12
2.4.1 How Does Disable /dev/mem and /dev/kmem Work ..2-12
2.4.2 Conclusion ..2-12
2.4.3 Warnings and Suggestions ...2-12

2.4.3.1 Incompatibility with Loadable Kernel Modules (LKMs) ..2-12
2.4.3.2 Incompatibility with Kernel Logger Daemon (klogd)...2-13
2.4.3.3 Incompatibility with X Servers ..2-13
2.4.3.4 How Does Backdoors Works ...2-13

3 CHAPTER 3: PROCESS PROTECTIONS ...3-1

3.1 RANDOMIZED PIDS...3-1
3.1.1 How Does Randomized PIDs Works ..3-1
3.1.2 Conclusion ..3-1

3.2 HIDDEN MAPS ...3-1
3.2.1 How Does Hidden Maps Works..3-1
3.2.2 Conclusion ..3-1

4 CHAPTER 4: FILE SYSTEM PROTECTIONS ...4-1

4.1 PROC FILE SYSTEM PROTECTIONS ..4-1
4.1.1 How Does Proc File System Protections Works...4-1
4.1.2 Conclusion ..4-1

5 CHAPTER 5: ADMINISTRATION TOOLS ...5-1

5.1 CHANGE PROCESS OWNER (CHPOWN) ...5-1
5.1.1 How Does Chpown Works..5-1
5.1.2 Conclusion ..5-1

5.2 SIGNAL PROTECTION (SIGP) ..5-2
5.2.1 How Does Sigp Works ..5-2
5.2.2 Conclusion ..5-2

6 CHAPTER 6: AUDIT OPTIONS..6-1

6.1 LOG LINUX ENHANCED SECURITY KERNEL EVENTS...6-1

APPENDIX A: PROC FILESYSTEM RESTRICTED FILES.. I

APPENDIX B: CHPOWN... I

APPENDIX C: SIGP... I

BIBLIOGRAPHY.. I

CREDITS.. I

Linux Enhanced Linux Enhanced Linux Enhanced Linux Enhanced

SecuritySecuritySecuritySecurity Overview Overview Overview Overview 1

LINUX ENHANCED SECURITY OVERVIEW

Linux Enhanced Security
1-1

CHAPTER 1

LINUX ENHANCED SECURITY OVERVIEW

1 CHAPTER 1: THE LINUX ENHANCED SECURITY OVERVIEW

1.1 THE LINUX ENHANCED SECURITY PROJECT

The Linux Enhanced Security is a free software project, released under the GNU General Public

License, which aims at the development of Linux based security patches as well as user-land tools meant

to aid security and provide GNU/Linux based system administrators with extended abilities and control over

their hosts and networks.

→ Visit our web site at http://www.lesecurity.org.

1.2 ARCHITECTURE SUPPORT

The Linux Enhanced Security is meant to support multiple architectures. Although current

development releases supports only x86, future releases will support a broader set of architectures.

1.2.1 Supported Architectures and Architecture Dependent Features

Since multiple architectures are supported, it is expectable to have certain architecture specific options
available. We can’t forget also, that each architecture has its unique behaviour and this will have direct

influence in the behaviour of Linux Enhanced Security features.

1.2.1.1 x86 Architecture (32 bits) (i386)

This architecture is currently supported. All features were designed to work with it.

1.2.1.2 IA-64 Architecture

Not currently supported (support will be probably added on series 1.x).

1.2.1.3 x86-64 Architecture (EM64T based chipsets)

Not currently supported (support will be probably added on series 1.x).

1.2.1.4 Sparc Architecture

Not currently supported (support will be probably added on series 1.x).

1.2.1.5 Alpha Architecture

Not currently supported (support will be probably added on series 1.x).

LINUX ENHANCED SECURITY OVERVIEW

Linux Enhanced Security
1-2

1.2.1.6 PPC Architecture

Not currently supported (support will be probably added on series 1.x).

1.2.2 SMP Support

When Symmetric Multi-Processing (SMP) support is compiled, the Kernel is prepared to handle

more than one processor at the same time. This kind of support will need locking mechanisms that allow
concurrent accesses to the same shared memory region work with data integrity guarantees.

1.2.2.1 SMP Safety

All features provided by Linux Enhanced Security are SMP safe and should work as expected.

1.3 THE LINUX ENHANCED SECURITY INTERNALS

Whenever a Linux Enhanced Security features is triggered within the Kernel, a well defined API is

used to access important structures and execute those functionalities.

1.3.1 The lesec() System Call

The lesec() system call was designed to allow the interaction between user-space applications and

kernel-space features implemented by Linux Enhanced Security.

This system call can only be executed by the super-user and has the following prototype:

int lesec(int call, void *data, int op);

The call argument expects an integer value that specifies which feature we're invoking. For instance, if we

wish to call the chpown (→ see section 5.1) operation, then we'll need to specify the call argument as

“LESEC_CHPOWN_CALL”.

The data argument expects a pointer to a structure needed by call handlers to perform the requested

operation. For instance, the “LESEC_CHPOWN_CALL” has a handler, the chpown_call() system call,

which expects a structure containing an uid, gid and pid values whenever the “CHPOWN_WRITE”

operation is requested.

The op argument specifies the operation that will be executed. For instance, if we wish to write data into the

Kernel, to be handled by the “LESEC_CHPOWN_CALL” handler, then we'll specify the operation as

“CHPOWN_WRITE”.

These interactions are made by all implemented features that need access to kernel-space.

Related Sections

1.3.2 Accessing Data Structures

5.1 Change Process Owner (chpown)

LINUX ENHANCED SECURITY OVERVIEW

Linux Enhanced Security
1-3

1.3.2 Accessing Data Structures

Whenever a pointer to a data structure is passed as an argument to the lesec() system call, the kernel-

space implementation needs to know what kind of structure it is. We identify it trough the call and op

arguments, which will then allow us to cast the void pointer to a known data structure.

After the type cast we copy the entire data structure from the user-space memory to kernel-space

memory, avoiding direct interactions with user-space memory. This is done using the

copy_from_user() system call. Data access is only available when all user-space memory is mapped

in Kernel memory.

1.4 THE LSM IMPLEMENTATION OVERVIEW

The Linux Security Modules (LSM) implementation was designed to allow programmers to write

modules which can be loaded and binded to special security hooks provided by the Kernel. This allows the

creation of security enhancements in the Kernel layer just by loading one or more modules avoiding the

trouble of patching the source and recompiling it all over again.

1.4.1 Problem

At first sight the LSM framework seems to be very useful and innovative, avoiding the patching of the

Kernel source, as it was already said. But its implementation is so flawed and incomplete that simply fails

to accomplish its main purposes. Some points of view:

� It's not possible to make any security enhancements that are dependent of data structure
restructuring

So if you're coding a LSM and at the same time need to patch the Kernel to restructure data structures,

there's no sense in coding the LSM. It makes much more sense to patch everything over the Kernel and

recompile it, since you'll be doing it any way.

� If you're using more than one security module, you can't guarantee their actions

If a module returns immediately on a special security hook, there isn’t any type of recursion that will lead him
into others.

� There are lots of places in the Kernel that doesn’t have any special security hooks

If you need to trig in any of these places you'll need to patch over the Kernel source. Once more, if you

need to patch, recompile the Kernel and reboot, then it makes much more sense to patch everything,

avoiding the complexity of the security module implementation.

1.4.2 Solution

To solve this problem, we’ve decided that the Linux Security Modules implementation isn’t suitable for

the Linux Enhanced Security development. Therefore there will be no support or expected

compatibility when enabling the Linux Security Modules feature within the Kernel.

LINUX ENHANCED SECURITY OVERVIEW

Linux Enhanced Security
1-4

1.5 DEVELOPMENT RULES

To maintain code and functionality integrity, a couple of basic rules must be followed while developing new

features for Linux Enhanced Security. This section will list them, divided by categories:

� Indentation Rules

• Code indentation should be similar to the used in the Kernel.

� Variable/Constant Name Rules

• Call Identifiers

- A call is an identifier for a handler function. For instance, “LESEC_CHPOWN_CALL”

is a reference to invoke the handler chpown_call() system call.

- Call identifier names are always prefixed by the “LESEC_” word and suffixed by the

“_CALL” word. The middle word uses capitalized characters and it specifies a

feature. For instance “LESEC_CHPOWN_CALL”.

• Op Identifiers

- An op is an identifier for the operation that handler should perform. For instance,

“CHPOWN_WRITE”.

- Op identifier names are always prefixed by the feature’s name and suffixed by the

operation’s name. For instance, “CHPOWN_WRITE”.

- Defined operations are always handled inside the correspondent call’s handler

function.

• Calls, Operations, Flags and similar items should be always declared with enum.

� Kernel-Land Developing Rules

• For bit operations always use the Kernel bitops API. This API is defined at

“asm/bitops.h” Linux header.

• SMP Support

- All features must be SMP safe. You can omit this if it’s clearly unnecessary.

- When developing SMP safe code, always use the Kernel SMP API.

� User-Land Developing Rules

• User-space tools must always interact with the Linux Enhanced Security features,

using the lesec() system call.

LINUX ENHANCED SECURITY OVERVIEW

Linux Enhanced Security
1-5

� General Developing Rules

• Standard Issues

- You should never break the standards. This can happen exceptionally and must
always be well documented and should be always optional.

• License Issues

- Each file should have a license Header. You can find this header in “doc/”

directory and never forget to update the file name and directory at the top of the
header.

1.6 TESTING LINUX ENHANCED SECURITY FEATURES

Currently and due the lack of implemented features, only a few tests have been provided within the Linux

Enhanced Security Testing Toolkit. With these tests you can test your system against almost all

implemented security features. In the future a broader set of tests will be available.

→ You can download the Linux Enhanced Security Testing Toolkit from our website at

http://www.lesecurity.org.

Memory ProtectionsMemory ProtectionsMemory ProtectionsMemory Protections 2

MEMORY PROTECTIONS

Linux Enhanced Security
2-1

CHAPTER 2

MEMORY PROTECTIONS

2 CHAPTER 2: MEMORY PROTECTIONS

2.1 NON-EXECUTABLE MAPS

The Non-Executable Maps implementations attempt to emulate trough software, the behaviour of the

execution bit in the CPU’s pagination mechanism, in the architectures that don’t support it. Depending on

the operating system’s segmentation design, the lack of the execution bit in the pagination mechanism, can
lead a set of instructions to be executed over non-executable mapped memory regions. This happens
because there is no physical way for the operation system to relate a non-executable map with a non-

executable page, therefore the CPU won’t be able to protect pages that are mapped has non-executable

memory against code executions.

These implementations can significantly slow a system’s performance if not taken seriously while in a
developing stage. Normally these are very resource consuming, since they are always performing all sorts of
checks, every time an application is interacting with certain memory regions.

Nowadays concerns, while being a services provider, are not only in data integrity and trust trough security
implementations. There is also a major concern in the availability and accessibility of a service using Quality
of Service. This last item is invariably related with a system’s processing capacity, we can have an optimized
link and a good traffic shaper, but what’s all that good for if we’re wasting our system’s resources with other
unrelated tasks?

We think that performance in security systems is very important and these should always try to minimize its
impact, finding a good balance between them. Equally, we should never give away security for a highly
performed system, we must be reasonable and choose an acceptable security/performance level. Mainly

under this subject, the Linux Enhanced Security searches this balance and tries to offer reasonable

solutions implementing different ideas for this problem.

2.1.1 Non-Executable Maps Implementations

There are many different techniques to inject and execute arbitrary code in a running process. If an attacker
accomplishes to use one of these techniques to change a process’s execution flow, he won’t be able to
change the system, if he isn’t able to execute system calls.

While most implementations try to prevent any execution attempts in non-executable maps, this one has a
little different approach. A process has the legitimacy to execute instructions in his address space, even if it
his non-executable mapped memory region. This sounds a little controversy, but we’ll see that interrupts can
helps us to prevent specific code executions from happen.

While in user-mode the Kernel hasn’t any possible way to verify what a process is doing, but when an

interrupt occurs (All-Interrupts Checking behaviour) or a system call (System Call Checking

behaviour) is executed a context switch happens and the possibility to evaluate the process’s condition

before the system call execution is gained. Already in kernel-mode the process is checked and if the

CPU’s eip is over a non-executable map region, he’s forced to terminate. Disabling the possibility to

execute system calls under these conditions prevent almost all sorts of attacks by denying any system
privilege and resource requests.

These checks can be triggered differently using two available behaviours: All-Interrupts Checking

behaviour and System Call Checking behaviour.

MEMORY PROTECTIONS

Linux Enhanced Security
2-2

While using the All-Interrupts Checking behaviour a non-executable map is executable until an

interrupt occurs. This means that every time an interrupt occurs, the Kernel verifies if the process has the

acceptable conditions to continue its execution. This behaviour is purely academic and has some
disadvantages:

• High resource consuming implementation, since interrupts are always happening.

• Can terminate legit code execution, for instance, GCC trampolines.

While using the System Call Checking behaviour a non-executable map is executable until a system

call is executed. This means that only when a context switch is triggered by a system call, the Kernel

verifies if the process has the acceptable conditions to continue its execution. This is the most advisable
behaviour since it has some valuable advantages:

• Very low resource consuming.

• Allow legit code execution, for instance, GCC trampoline compatibility.

Anyway, these are not full proof solutions and there are a few situations where they fail to accomplish
security:

• In the System Call Checking behaviour it’s possible to create a loop that will

starve the CPU’s resources. But this situation is also valid in a local environment, where

users are allowed to execute their own code. So, this is a job for a resources limit tool and
not a non-executable map implementation.

• Under certain specific circumstances, it’s possible to avoid (→ see section 2.1.3.8)

both behaviours. But, it’s also easier to implement a legit return into libc attack. This can

be prevented using a GCC Stackguard like patch.

As we’ve said, covering these issues here, would lead to a very slow implementation and since there are
alternative solutions that can be used to complement it without harming the system’s performance, we’ve
decided to implement it this way.

→ A Randomized Stack protection may difficult issues like these from happening, please see

section 2.2.

→ A StackGuard like protection can successfully prevent stack-smash attacks. Please see in

section 2.1.3.2 why these mechanisms can be also a good security solution in complement

with kernel-side protections.

If you still don't know which behaviour you should choose for your system please see section 2.1.3 for more
information.

Related Sections

2.1.3.2 The GCC Executable Stacks and StackGuard

2.1.3.8 Avoiding the Non-Executable Maps Protection

2.2 Randomized Stack

MEMORY PROTECTIONS

Linux Enhanced Security
2-3

2.1.1.1 i386 Compatible Processor Behaviours

In section 2.1.1 we’ve overviewed how these behaviours worked. In this section we’ll try to go further in

explanations being a little more technical.

These behaviours end up being very simple, but let us explain first how the Kernel handles interrupts.

There are a few interrupts that forces a context switch from user-space to kernel-space, for instance, a

time interrupt triggered by the real time clock or a task-switch interrupt triggered by a system call.

Whenever one of these interrupts occurs the Kernel starts executing the entry.S code. The entry.S

code is a Kernel section that has various handlers to redirect the Kernel’s execution flow to a specific

section, depending on the context that has switched into kernel-space.

If we place code before the system_call checks in the entry.S code, it will be executed every time a

context switch interrupt occurs; this is the All-Interrupts Checking behaviour.

Diagram for the All-Interrupts Checking behaviour

In the other hand, if we place code along with the system call checks, it will be executed only when a system

call is executed; this is the System Call Checking behaviour.

Diagram for the System Call Checking behaviour

Interrupt

Check

Terminate Execution

Entry.S Current Task

Kernel Space User Space

eip is over a non-
executable map

eip is over a
executable map

valid
syscall_id &
int $0x80

Interrupt

Check

Terminate Execution Entry.S Current Task

Kernel Space User Space

eip is over a non-
executable map

eip is over an
executable map

MEMORY PROTECTIONS

Linux Enhanced Security
2-4

It’s always preformed the same check to validate the current task, either when an interrupt occurs, All-

Interrupts behaviour, or either when a task-switch is triggered by system call, System Call

Checking behaviour. Validating a process consists only in verifying which map the CPU’s eip is. Then,

if the “VM_EXEC” flag on that map is unset, a “SIGSEGV” is sent to the current process forcing its

termination.

Although it isn’t a full proof protection, it can still be very successful while stopping almost all attacks and has
an incredible performance.

Related Sections

2.1.1 Non-Executable Maps Implementations

2.1.1.2 The Future

We’re not sure of the actual usefulness in performing these checks each time an interrupt occurs with the

All-Interrupts Checking behaviour. The time that a process can take in a tick depends on the

processor. Execution times on a 80386 processor are smaller than on a PIV processor. A PIV processor is

able to execute much more instructions per tick, making this behaviour faster but less interactive with the

routine. In the other hand a 80386 processor will interact much more times with the routine, slowing down

the scheduling process.

While a final version hasn’t been release, we’ll decide what we’ll do with this protection. Probably we’ll only

trig on system calls, leaving the All-Interrupts Checking behaviour behind.

Aside from our decision, we maintain both behaviours for you to choose when configuring the Kernel.

2.1.2 The modify_ldt() Compatibility (i386 only)

Some applications might need some control over the memory segmentation of their process space, this is
common between operating systems emulators that need to reproduce that specific system’s segmentation

design. The Linux Kernel allow the applications to define new segments trough modify_ldt() system

call.

Since Non-Executable Maps would interfere with these applications, a modify_ldt() compatibility was

also implemented. With this compatibility, the applications running under these conditions will still be able to
have their maps verified without having problems.

2.1.2.1 How Does modify_ldt() Compatibility Works

When a process executes modify_ldt() to define new segments, the Kernel will assign a new Local

Descriptor Table (LDT) and obviously, it will no longer share its own with other processes.

According to IA-32 Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture, Section 3,

Page 19: "(...) The following default segment selections cannot be overridden:

Instruction fetches must be made from the code segment. (...)", so, when calculating

the eip position on the Linear Address Space, we only need to take care with the Code Segment

Selector (CSS) because we won't be able to call a far pointer using any of the other segment selectors

(SS, DS, ES, FS or GS).

MEMORY PROTECTIONS

Linux Enhanced Security
2-5

When a process performs a far call to execute instructions on a newly created segment, the eip won't

receive a Linear Address, instead it will receive an offset value for that segment starting at address

zero. While we’re checking if the eip position is within map boundaries, we'll add the base address that’s

inside the Segment Descriptor defining the actual code segment. We can identify this Segment

Descriptor by reading the actual Code Segment (CS) index that’s used by the far pointer. This check is

only performed if the current CS and the original CS defined by the Kernel under Current Privilege

Level (CPL) 3, don't match up.

2.1.3 Warnings and Suggestions

Before starting to choose your Linux Enhanced Security options, you should be aware of some

important details that must be taken seriously, jeopardizing your system’s security if you do not do so.

2.1.3.1 Selecting A Non-Executable Maps Behaviour

As we said above in section 2.1.1.2 the All-Interrupts Checking behaviour doesn’t make

sense on slower processors so if your machine has a low processing capacity you probably want to check

maps only when a system call is executed. The only advantage in choosing the All-Interrupts

Checking behaviour is that a process won't loop for long if there's arbitrary code forcing it to do so.

Although if this happens, no other resources will be compromised except CPU time.

→ If you'd like to know more about the incompatibilities of the All-Interrupts Checking

behaviour, please refer to section 2.1.3.3.

Related Sections

2.1.1.2 The Future

2.1.3.3 Trampolines Compatibility

2.1.3.2 The GCC Executable Stacks and StackGuard

Since the first appearance of the newly AMD processors with the executable bit support in the pagination

mechanism that the GNU Compiler Collection (GCC) started to force executable stack maps in the

early 3.3.x releases. This decision was taken by the GCC developer team due the fact that certain code

wasn’t running in these processors anymore. This was happening because the enforcement of the non-

executable pages in the processor’s pagination mechanism was faulting the GCC’s nested function

handlers, often called trampolines.

Trampolines are small pieces of code generated on-the-fly that are placed on the process’s stack map and
then executed. If the stack map is non-executable, then a process that uses nested functions will simply fail

its execution and most probably will get killed with a Page Fault.

This seems a little controversial, finally that we have an execution bit support in x86 architectures that

solves the non-executable maps problem, the GCC now introduces a technical solution that is not compatible

and deprecates this support. However, the GCC developer team plans to support natively in future releases

the StackGuard patch has a solution for this problem. Obviously this is a sloppy solution covering the real

problem.

The StackGuard project is a GCC patch that prevents stack-smashing attacks. Placing a token (canary)

before the return address it’s possible to know if it has been modified, checking if the token has been

also modified. Normally this token can be either a random, null or terminate value. This solution doesn’t

MEMORY PROTECTIONS

Linux Enhanced Security
2-6

prevent against stack writings, it only prevents against execution flow changes, by manipulating the return

address value.

The StackGuard protection doesn’t deprecate the Non-Executable Maps protection since it doesn’t

prevent against heap attacks.

When using the All-Interrupts Checking behaviour only binaries compiled with GCC versions prior

to 3.3.0 will be stack-smash safe and also trampoline incompatible (→ see section 2.1.3.3).

When using the System Call Checking behaviour there will be a new option that forces a check in

executable stack maps too.

Related Sections

2.1.3.3 Trampolines Compatibility

2.1.3.3 Trampolines Compatibility

As explained above (→ see section 2.1.3.2), trampolines are small pieces of code generated on-

the-fly that are placed on the process’s stack map and then executed. Trampolines only need to handle

addressing values and execute a call instruction, excluding system call execution. Therefore, if we’re only

checking the eip value each time a system call is executed (System Call Checking behaviour),

there won’t be any trampoline incompatibilities. However, this doesn’t happen when checking the eip

value each time an interrupt occurs (All-Interrupts Checking behaviour). If an interrupt occurs

while a trampoline is being executed, the eip will be over a non-executable map and the process will be

forced to terminate. This last behaviour is not trampoline compatible, turning a process’s execution
unpredictable.

Related Sections

2.1.3.2 The GCC Executable Stacks and StackGuard

2.1.3.4 When Should modify_ldt() Compatibility Be Used

You should use this option if you’re working with programs that depends the modify_ldt() system call to

work properly. This should be the case of some emulators or programs that where designed to work on a
specific architecture. If you’re not one of these cases, unless you really need it for any other reason, you can
leave this option disabled.

2.1.3.5 The AMD64 Architecture

According to AMD64 Architecture Programmer's Manual, Volume 2, System Programming, revision 3.09,

Chapter 5, Page Translation and Protection, Page 174: "(...) The AMD64 architecture
introduces a third form of protection that prevents software from attempting to

execute data pages as instructions. (...)". If you’re using this processor you won't need to

use Non-Executable Maps protection.

→ Please be warned for the GCC executable stack implementation in section 2.1.3.2.

Related Sections

MEMORY PROTECTIONS

Linux Enhanced Security
2-7

2.1.3.2 The GCC Executable Stacks and StackGuard

2.1.3.6 The Intel Itanium 2 Architecture

This architecture contains a Non-eXecutable (NX) bit on page permissions which enables non-executable

pages. If you’re using this processor you won't need to use Non-Executable Maps protection.

→ Please be warned for the GCC executable stack implementation in section 2.1.3.2.

Related Sections

2.1.3.2 The GCC Executable Stacks and StackGuard

2.1.3.7 The Intel LaGrande Technology (LT)

This technology will be implemented on future PIV processors (as well has the VanderPool

Technology). The LT Technology supports many new hardware security features including the NX bit on

page permissions (→ see section 2.1.3.6). If you’re using a processor with this technology you won't

need to use Non-Executable Maps protection.

→ Please be warned for the GCC executable stack implementation in section 2.1.3.2.

Related Sections

2.1.3.2 The GCC Executable Stacks and StackGuard

2.1.3.8 Avoiding the Non-Executable Maps Protection

The Non-Executable Maps protection performs only one check to see if the eip is over a non-

executable map region. Under certain conditions it’s possible to bypass it jumping to an executable map
before the actual context switch happens.

A system call context switch happens whenever an interrupt 0x80 is executed. The Kernel will then load

the specific system call arguments directly from the CPU’s registers.

If we can control the process’s stack we’re able to execute instructions to load the CPU’s registers with a

specific system call’s argument values. Then, if we perform a far jump to an interrupt 0x80 instruction

already existent in a code map, the Non-Executable Maps protection will see the eip over a legit

executable map allowing the process execution. It’s very probable to find system call interrupts in a code

map since a process can’t do much without system calls and these can be often found within the libc code.

Actually this is most similar to return into libc attacks but with some disadvantages that difficult the

whole process. Since you’re performing a far jump into a read-only map, you won’t be able to control the

execution flow when the system call returns, almost certainly leading to a process crash. Although we’re

limited to only one system call, if the process has real uid 0, executing the execve() system call is

enough to compromise the system, but in most cases we’ll need to set*id() first. Avoiding this protection

can be simpler if we use a return into libc technique which doesn’t have these disadvantages and

was never meant to be covered by this protection.

MEMORY PROTECTIONS

Linux Enhanced Security
2-8

Diagram for the Non-Executable Maps Bypass (reproduces a stack-smash attack)

As we’ve said in the beginning of this chapter (→ see section 2.1) we invest in solutions that offer a

good balance between security and performance. This is a really fast implementation that gives not the best
but a very acceptable security level, therefore we’ve decided to leave it this way instead of loosing
performance with a more complex solution.

Data Segment

Code Segment

...
int $0x80

...

Stack

...
mov $arg3, %edx
mov $arg2, %ecx
mov $arg1, %ebx
mov $valid_syscall_id, %eax

call $code_seg_addr

...

Loads the syscall
arguments into the cpu
registers

Changes the execution
flow to an executable
map

Executes a syscall
switch interrupt

User Space

Kernel Space

Entry.S

Scheduller ...

Check

VMA Protection

Task’s eip is over an
executable map so the VMA
protection will be bypassed
and the task scheduled

Task Struct

eip

...

...

eip is over an
executable map

MEMORY PROTECTIONS

Linux Enhanced Security
2-9

We’re already working on a GCC based protection to complement this protection without loosing performance

and provide a wider secure solution against these issues.

→ We also warn you for the use of a Randomized Stack protection altogether with this protection

Related Sections

2.1 Non-Executable Maps

2.2 Randomized Stack

2.2 RANDOMIZED STACK

Stack randomization techniques appeared has an effective solution against the well known stack-

smashing attacks. Although it self doesn’t serve as a full proof security replacement, its simplicity and

effeteness made it a big trump in nowadays security schemes.

2.2.1 How Does Randomized Stack Works

Each time a binary is executed, multiple code and data maps are requested to the operating system. One of
them is an expand-down data map, also known as stack, which will be placed at the top of the process's
memory. Later, a random value is subtracted from the pointer that points to the top of the process’s memory,
this way selecting a random memory region. A different random region is selected between executions,

statistically reducing the chances, closer to 0%, that a stack-smash attack has to be successful.

2.2.2 Randomized Stack and StackGuard

There are many implementations that prevent stack-smash attacks but all of them have their pros and

cons. Sometimes we need to use more than one protection or choose one that best fits our system in order
to increase effeteness in preventing these attacks.

For instance, when using the StackGuard with GCC, the use of Randomized Stack protection may

be omitted but the StackGuard protection, in some cases, can be avoidable with some exploiting

techniques that are based on a previous stack analysis to retrieve the canary value and craft it into the

string which contains the shellcode and return address value. This kind of exploiting is generally used

when using random canaries, because these are generated with a random value XORed along with the

return address of the current stack frame.

If security is really important on your system, then you should use StackGuard and Randomized Stack

protection.

2.2.3 The Future

With the actual evolution of compile time security enhancements and processor protections, this feature may

become deprecated soon as well as the Non-Executable Maps protection. But for now, this

enhancement it’s justifiable.

MEMORY PROTECTIONS

Linux Enhanced Security
2-10

2.3 VMA PROTECTIONS

Lately we’ve been assisting the uncovering of multiple flaws in the Linux Kernel that could lead into a

locally compromised system. Most of these flaws were in boundary checks preformed on values passed to

system calls. Good examples of this flaws appeared in munmap(), mremap() and brk() system calls that

allowed an user-space process to map Kernel memory as a consequence. Once this memory was

mapped in user-space, the only thing left to do was to change specific values in specific Kernel

structures, the trickiest part, but how this was accomplished is another story.

2.3.1 How Does VMA Protections Works

Every task has a region in its address space that is reserved to Kernel data. This region is between

0xc0000000 and 0xffffffff, therefore Kernel memory will always be mapped here. Once we already

know that the address space reserved to the Kernel is above the 3GB, we also know that the task’s data

must be under the 3GB. The Linux Kernel has the “TASK_SIZE” macro that we can use to know

exactly where the task’s memory ends.

The main idea for this protection mechanism is to check, every time the Kernel is returning into user-

space after a system call, if there is any memory mapped above the “TASK_SIZE” value. If this happens,

we know that kernel memory is mapped, therefore a SIGSEGV is sent, forcing the task to terminate.

Diagram for the VMA Protections

Current Task

0xc000000

0xfffff000

Above TASK_SIZE

Process Descriptor

Stack

Allocated maps

...

Check

Terminate Current Task

There are maps
allocated above

TASK_SIZE

Schedulle Task

There aren’t
maps allocated
above TASK_SIZE

Kernel Space

MEMORY PROTECTIONS

Linux Enhanced Security
2-11

This protection is trivial to implement in the Linux Kernel 2.4.x series, since there are no mapped

regions above “TASK_SIZE” available to user-space. However, in the newest Linux Kernel 2.6.x

series, every task has a memory region above “TASK_SIZE” mapped from 0xffffe000 to 0xfffff000

(at least on i386 architectures). This region is used by the Dynamic Shared Object (DSO) map (→ see

section 2.3.2.4) and can be ignored while performing normal map checks without great impact on

performance (→ see section 2.3.2.2). Since maps cannot be overlapped by other maps, it's safe to

ignore these reserved mapped regions.

Related Sections

2.3.2.2 The Impact on Performance

2.3.2.4 Dynamic Shared Objects Map

2.3.2 Warnings and Suggestions

Before starting to choose your Linux Enhanced Security options, you should be aware of some

important details that must be taken seriously, jeopardizing your system’s security if you do not do so.

2.3.2.1 When Should VMA Protections Be Used

You may find this a little paranoid, however, security holes like those present in munmap(), mremap() and

brk(), may still happen. We can never be too sure about the system calls safety therefore, if security is

most important to your system, it’s advisable to select this option.

2.3.2.2 The Impact on Performance

If you select this option, the impact on the performance of your system will be very low, since the algorithm

used to perform the VMA checks is optimized with caching mechanisms that speeds up the entire process.

The first time that VMA pools are verified, the stack map pointer is cached and since this map is always the

last one before reaching “TASK_SIZE”, future verifications use directly the cached pointer, ignoring all

maps below.

2.3.2.3 The Persistent Kernel Map (PK Map)

The Persistent Kernel Map (PK Map) is a memory pool that contains, for short periods of time, Page

Table Entries (PTE) that are used to map High Memory Region pages into Normal Memory

Region and vice-versa. This map behaves like a memory bouncer.

This memory region isn’t new in Linux Kernel 2.6.x series and exists in older Kernel versions since

High Memory Management support first appeared. The difference between older and current series is the

size of this map that isn’t constant anymore and has now a variable range between “PKMAP_BASE” and

“FIXADDR_SIZE”.

For the x86 compatible architectures, when the number of CPUs is less than or equal to 32 units, the

“PKMAP_BASE” constant holds the 0xff800000 value and the “FIXADDR_SIZE” is a compile time

defined constant. This constant value depends on the Kernel configuration, therefore we can only say that

PKMap begins on “PKMAP_BASE” and ends on “FIXADDR_SIZE”.

MEMORY PROTECTIONS

Linux Enhanced Security
2-12

2.3.2.4 Dynamic Shared Objects Map (DSO Map)

The Dynamic Shared Objects Map (DSO Map) was first introduced in the recent Linux Kernel

2.6.x series and it’s used to load an ELF binary containing, has its name says, Dynamic Shared

Objects. These objects are used to speed up system calls, sigtrampoline and sigreturn purposes.

For the x86 compatible architectures, the DSOs are called Virtual System Calls and for IA-64 these

are called Fast System Calls, because system call's virtualization isn’t supported by this architecture.

→ See “linux/Documentation/ia64/fsys.txt” for more information about Fast System

Calls.

2.4 DISABLED /DEV/MEM AND /DEV/KMEM

Nowadays, many backdoor systems are installed into the kernel space directly through “/dev/mem” or

“/dev/kmem” devices even if the Kernel hasn’t compiled the module support. The only way to prevent

this kind of backdoors is preventing those devices from being opened.

2.4.1 How Does Disable /dev/mem and /dev/kmem Work

These are character devices that are handled by special routines called, device operations. There are many

operations available to character devices, but the most common amongst them are open(), write(),

read() and close(). Disabling the open() operation for these devices will leave them inaccessible and

any open() attempt on the device will return an “EPERM”.

2.4.2 Conclusion

Since it’s not possible to open these devices, there's no way to install backdoor code into the Kernel

space. Although, as a side effect, loading Kernel modules will be impossible, neither running Klog nor X

Server.

Related Sections

2.4.3.1 Incompatibility with Loadable Kernel Modules (LKMs)

2.4.3.2 Incompatibility with Kernel Logger Daemon (klogd)

2.4.3.3 Incompatiblity with X Servers

2.4.3 Warnings and Suggestions

Before starting to choose your Linux Enhanced Security options, you should be aware of some important
details that must be taken seriously, jeopardizing your system’s security if you do not do so.

2.4.3.1 Incompatibility with Loadable Kernel Modules (LKMs)

The Loadable Kernel Modules (LKMs) are loaded trough “/dev/kmem” using a set of user-land

tools called modutils. If this device is disabled, there's no way to load a module.

MEMORY PROTECTIONS

Linux Enhanced Security
2-13

2.4.3.2 Incompatibility with Kernel Logger Daemon (klogd)

The Kernel Logger Daemon is used to log events generated by the Kernel and depends “/dev/kmem”

to work properly. Therefore, if this device is disabled, klogd will fail its initialization.

2.4.3.3 Incompatibility with X Servers

Some X Servers like XOrg and XFree86, use the “/dev/kmem” to access directly to the Kernel

memory. If this device is disabled then X Servers like these won't be able to run.

2.4.3.4 How Does Backdoors Works

There are multiple ways to load backdoor code into Kernel space, but they will always need to open

“/dev/mem” or “/dev/kmem” to access the Kernel memory. This happens because an attacker needs to

know the exact location of some important Kernel pointers in order to change and point them to the

backdoor code. Loading code into Kernel space can be a simple process when you have modutils, but

very painful when these aren’t supported, since writing portable ways to load it in different systems is always
a difficult to accomplish. Without these devices, such thing isn’t possible anymore.

Process ProtectionsProcess ProtectionsProcess ProtectionsProcess Protections 3

PROCESS PROTECTIONS

Linux Enhanced Security
3-1

CHAPTER 3

PROCESS PROTECTIONS

3 CHAPTER 3: PROCESS PROTECTIONS

3.1 RANDOMIZED PIDS

There are flaws that can be exploited by guessing the pid value of a process that hasn’t been yet launched.

This type of attack is based on the sequential pid attribution. The pid randomization comes has a solution

for this problem.

3.1.1 How Does Randomized PIDs Works

When a new process is created, the Kernel attributes a unique pid that will distinct it from all the others.

Normally the pid value is attributed adding 1 to the previous attributed pid, but when randomization is

enabled this will be randomly generated value between 0x300 and 0x7fff. Case happens to be generated

an already attributed pid then the algorithm will enter a loop, adding 1 to the randomly generated pid until

a free one is found.

3.1.2 Conclusion

If you use pid randomization together with Proc File System Protections (→ see section 4.1),

will be almost impossible to retrieve the pid of a process.

Related Sections

4.1 Proc File System Protections

3.2 HIDDEN MAPS

There are attacks that need to consult “/proc/<pid>/maps” to access a task’s map information and

locate pointers references needed to successfully exploit an existent flaw. Since this file is only used
information/debugging issues and the current task doesn’t depend from it, it’s safe to omit all map
information in it.

3.2.1 How Does Hidden Maps Works

Every time a read operation is called for this file, the Proc file system handlers are modified in such way that

instead of returning real VMA pointer information, each map will have a null pointer has a reference.

3.2.2 Conclusion

Placing null pointers in each map reference, there's no way for an attacker to know the process's memory

map regions using “/proc/<pid>/maps”.

File System ProtectionsFile System ProtectionsFile System ProtectionsFile System Protections 4

FILE SYSTEM PROTECTIONS

Linux Enhanced Security
4-1

CHAPTER 4

FILE SYSTEM PROTECTIONS

4 CHAPTER 4: FILE SYSTEM PROTECTIONS

4.1 PROC FILE SYSTEM PROTECTIONS

The Proc file system gathers various files with constantly updated system and process information. In

systems that have hostile local environments, for instance shell providers, it may be useful to deny or restrict

access to this information. The Proc File System Protections enable you to select different access

restrictions to system and process information trough the Proc file system.

→ See Appendix A for a complete reference list of options and files where these restrictions are

applied.

4.1.1 How Does Proc File System Protections Works

For system files that lay at the Proc’s root directory the only option available is enable or disable and for

the process’s information you can select between user and group level restrictions.

→ See Appendix A for a complete reference of the modified permissions and disabled files.

4.1.2 Conclusion

There is certain information that isn’t supposed to be seen by users on a system. Occulting important
information may difficult the disclosure or even exploit process of a certain security flaw.

Has an alternative to the system files protection you can also change their permission using chmod() to

restrict access to the system users. However there are some files that shouldn’t be seen, not only by users,

but even by super-user. For instance, kallsyms and kcore files could be used by a successful attacker

to retrieve sensitive information as memory offsets and user passwords respectively. Therefore, we advise
you to disable of these files.

Administration ToolsAdministration ToolsAdministration ToolsAdministration Tools
 5

ADMINISTRATION TOOLS

Linux Enhanced Security
5-1

CHAPTER 5

ADMINISTRATION TOOLS

5 CHAPTER 5: ADMINISTRATION TOOLS

5.1 CHANGE PROCESS OWNER (CHPOWN)

Sometimes there are application daemons that only need certain higher privileges while they’re starting up.

For instance, if you’re binding Apache into privileged service ports (<1024), you’ll need to run it with

super-user privileges, otherwise the bind() system call will return an “EPERM”. However after this

initialization, it’s very possible that super-user privileges won’t be needed anymore, and if they are, you

can easily create an environment where they won’t.

You may think that Apache isn’t a very good example because, if it’s well configured, its children processes,

which actually process the user input data, are running with local-user privileges and at most

compromising a local user account. Well, that’s not a wised thought, since history tells us that many shared

memory flaws allowed, what appeared a local-user compromise, to be a super-user compromise,

executing code in a shared memory space with super-user privileges. Like Apache, many other

applications will have this sort of security flaws.

As we’ve seen, this can be a security problem and we should never trust the application’s privilege
separation mechanism, in the worst case scenario this should be always guaranteed by the operating
system.

→ As a solution for these issues, chpown enables you to change on-the-fly a process real user and

group.

5.1.1 How Does Chpown Works

Whenever chpown is executed to change a process owner, it will interact with kernel-space, trough the

lesec() system call, and update the process’s task structure fields; suid, fsuid, rgid, egid, sgid and

fsgid, to the requested owner privileges. If chpown has requested changes to an invalid pid value, the

lesec() system call returns “EINVAL”.

→ See the Appendix B for the chpown manual.

5.1.2 Conclusion

Having services running with local-user privileges reduces the chances of a compromised system and at

most you’ll have a compromised service.

Sometimes an attacker would use signals to kill a service, for instance if an apache process child is running

with the same parent uid, he will be able to kill it. However, Signal Protections (sigp) should work for

theses cases (→ see section 5.2).

Related Sections

5.2 Signal Protection (SIGP)

ADMINISTRATION TOOLS

Linux Enhanced Security
5-2

5.2 SIGNAL PROTECTION (SIGP)

If an attacker can successfully exploit a flaw present in a child process and if it’s running with the same
parent privileges, he’s able to send signals to the parent process. For instance, he could use this feature to

send a kill signal and force the parent process to terminate execution. With Signal Protection you can

deny certain signals from being delivered to a given process, even the kill signal.

5.2.1 How Does Sigp Works

Within the Kernel each task is discriminated by a task structure. Each task structure has a special 32 bit

mask that identifies at most 32 inhibit signals. When sigp is executed, it will interact with kernel-space,

trough the lesec() system call, and mask set/unset the correspondent bit. Whenever the Kernel delivers

a signal to a process it will then check its bit mask first and if the correspondent bit is cleared, the signal is
delivered, otherwise it is discarded.

→ See the Appendix C for the chpown manual.

5.2.2 Conclusion

Inhibiting certain signals may difficult attacks that depends this feature to work properly, fortifying your

services availability and reducing the possibilities of successful Denial of Service attacks only to client

instances.

Audit OptionsAudit OptionsAudit OptionsAudit Options 6

AUDIT OPTIONS

Linux Enhanced Security
6-1

CHAPTER 6

AUDIT OPTIONS

6 CHAPTER 6: AUDIT OPTIONS

6.1 LOG LINUX ENHANCED SECURITY KERNEL EVENTS

The Audit Options goal is to log system’s relevant information. This feature isn’t yet developed and

presently you can only log certain features. In future releases this option should be vastly explored in order
to offer a power set of system crucial information.

Proc File System Proc File System Proc File System Proc File System

Restricted FilesRestricted FilesRestricted FilesRestricted Files A

PROC FILESYSTEM RESTRICTED FILES

Linux Enhanced Security
I

APPENDIX A

PROC FILESYSTEM RESTRICTED FILES

APPENDIX A: PROC FILESYSTEM RESTRICTED FILES

OPTIONS

Restriction options for accessing “/proc/pid/” data:

Option Comment

LESEC_PROC_FS_PROT_OPT_USR Restrict access on a user basis
LESEC_PROC_FS_PROT_OPT_GRP Restrict access on a group basis

Default option is “LESEC_PROC_FS_PROT_OPT_USR”.

CONFIGURATION OPTIONS

Directory “/proc/<pid>” restriction modes for “LESEC_PROC_FS_PROT_OPT_PID” option:

Mode

Option

S_IFDIR|S_IRUSR|S_IXUSR LESEC_PROC_FS_PROT_OPT_USR
S_IFDIR|S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP LESEC_PROC_FS_PROT_OPT_GRP

Options to disable correspondent “/proc” files:

Option

File

LESEC_PROC_FS_PROT_MEMINFO /proc/meminfo
LESEC_PROC_FS_PROT_CPUINFO /proc/cpuinfo
LESEC_PROC_FS_PROT_HW /proc/hardware
LESEC_PROC_FS_PROT_STRAM /proc/stram
LESEC_PROC_FS_PROT_DEV /proc/devices
LESEC_PROC_FS_PROT_FS /proc/filesystems
LESEC_PROC_FS_PROT_CMDLINE /proc/cmdline
LESEC_PROC_FS_PROT_LOCKS /proc/locks
LESEC_PROC_FS_PROT_XDOM /proc/execdomains
LESEC_PROC_FS_PROT_PART /proc/partitions
LESEC_PROC_FS_PROT_STAT /proc/stat
LESEC_PROC_FS_PROT_DISKSTAT /proc/diskstats
LESEC_PROC_FS_PROT_INT /proc/interrupts
LESEC_PROC_FS_PROT_MODULES /proc/modules
LESEC_PROC_FS_PROT_SSTAT /proc/schedstat
LESEC_PROC_FS_PROT_VMSTAT /proc/vmstat
LESEC_PROC_FS_PROT_BUDINFO /proc/buddyinfo
LESEC_PROC_FS_PROT_KCORE /proc/kcore
LESEC_PROC_FS_PROT_KASYMS /proc/kallsyms

Administration Tools: Administration Tools: Administration Tools: Administration Tools:

ChpownChpownChpownChpown B

ADMINISTRATION TOOLS: CHPOWN

Linux Enhanced Security
I

APPENDIX B

ADMINISTRATION TOOLS: CHPOWN

APPENDIX B: CHPOWN

Usage

chpown <user>[:<group>] <pid>

Description

Change the user and/or group ownership for a given process.

Options

Argument

Description

user The new user-name or the uid value that will be set for the
process.

group The new group-name or gid value that will be set for the process.
This argument is optional.

pid The process id value.

Example

chpown apache:apache 1234

This will modify the process’s user/group, identified by 2321, to user and group apache.

PROTOCOL SPECIFICATION

Call identifier

LESEC_CHPOWN_CALL

Operation identifiers

CHPOWN_WRITE

Data specification

Value

Size (bits) Description

uid 32 Specifies the uid value
gid 32 Specifies the gid value
pid 16 Specifies the pid value

 Data alignment of 64 bits

Administration Tools: Administration Tools: Administration Tools: Administration Tools:

SigpSigpSigpSigp C

ADMINISTRATION TOOLS: SIGP

Linux Enhanced Security
I

APPENDIX C

ADMINISTRATION TOOLS: SIGP

APPENDIX C: SIGP

Usage

sigp <option> [args]

Description

Inhibit certain signals in a process.

Options

Arguments

Description

-s <pid> +-
signal [...
+-signal]

Set/unset a list of inhibited signals in a process
identified by the argument pid. To set you must concatenate
the character ‘+’ and to unset the character ‘-‘.

-p <pid> Prints the list for inhibited signals for the process
identified by pid.

-l Prints the list of valid signals.

-h Prints the help output.

Example

sigp -s 1234 +SIGKILL +SIGSEGV -SIGTERM

This will set inhibited signals “SIGKILL”, “SIGSEGV” and unset “SIGTERM” for the process with

pid 1234.

PROTOCOL SPECIFICATION

Call identifier

LESEC_SIGP_CALL

Operation identifiers

SIGP_WRITE
SIGP_READ

Data specification

ADMINISTRATION TOOLS: SIGP

Linux Enhanced Security
II

Value

Size (bits) Description

isig_set 32 Set signals mask
isig_unset 32 unset signals mask

BibliographyBibliographyBibliographyBibliography

BIBLIOGRAPHY

Linux Enhanced Security
I

BIBLIOGRAPHY

BIBLIOGRAPHY

Bibliographic references that where used to support this manual a listed here.

I. AMD64 ARCHITECTURE: PROGRAMMERS MANUALS

http://www.amd.com/us-
en/Processors/TechnicalResources/0,,30_182_739_7203,00.html

II. INTEL ARCHITECTURE: SOFTWARE DEVELOPERS MANUALS

http://www.intel.com/design/Pentium4/documentation.htm?iid=ipp_dlc_procp4f+tech_
doc&#manuals

III. INTEL EXTENDED MEMORY 64 TECHNOLOGY: SOFTWARE DEVELOPER’S

http://www.intel.com/design/pentium4/manuals/index_new.htm#em64_doc_ch

IV. INTEL LAGRAND AND VANDERPOOL TECHNOLOGY

http://www.intel.com/pressroom/archive/releases/20040218corp.htm

V. GNU COMPILER COLLECTION (GCC) INTERNALS

http://gcc.gnu.org/onlinegocs/gccint/

VI. IMMUNUX STACKGUARD MECHANISM: STACK INTEGRITY CHECKING

http://www.cse.ogi.edu/DISC/projects/immunix/StackGuard/mechanism.html

CreditsCreditsCreditsCredits

CREDITS

Linux Enhanced Security
I

CREDITS

CREDITS

Has you can imagine, this project demands a lot of work and writing good documentation it’s not an easy
task. Therefore all contributions have proven themselves to be a very important issue while writing this
manual.

We’d like to dedicate this manual section to the people that have contributed significantly with text and
corrections. Here is a list of them:

• João Santos

• Bruno Vieira

• Luis Pedrosa

